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PREFACE

An image is worth more than ten thousand words - and for that reason Computer
Vision has received enormous amounts of attention from several scientific and
technological communities in the last decades. Computer Vision is defined as
the process of extracting useful information from images in order to be able to
perform other tasks.

An image usually contains a huge amount of information that can be utilized
in various contexts. Depending on the particular application, one may be inter-
ested, for example, in salient features for object classification, texture properties,
color information, or motion. The automated procedure of extracting meaning-
ful information from an input image and deriving an abstract representation of its
contents is the goal of Computer Vision and Image Analysis, which appears to be
an essential processing stage for a number of applications such as medical image
interpretation, video analysis, text understanding, security screening and surveil-
lance, three-dimensional modelling, robot vision, as well as automatic vehicle or
robot guidance.

This book provides a representative collection of papers describing advances
in research and development in the fields of Computer Vision and Image Analysis,
and their applications to different problems. It shows advanced techniques related
to PDE’s, wavelet analysis, deformable models, multiple classifiers, neural net-
works, fuzzy sets, optimization techniques, genetic programming, among others.
It also includes valuable material on watermarking, image compression, image
segmentation, handwritten text recognition, machine learning, motion tracking
and segmentation, gesture recognition, biometrics, shadow detection, video pro-
cessing, and others.

All contributions have been selected from the peer-reviewed international sci-
entific journal ELCVIA (http://elcvia.cvc.uab.es). The contributing authors (as
well as the reviewers) are all established researchers in the field and they pro-
vide a representative overview of the available techniques and applications of this
broad and quickly emerging field.



vi Preface

The aim of this book is to provide an overview of recent progress in meth-
ods and applications in the domains of Computer Vision and Image Analysis for
researchers in academia and industry as well as for Master and PhD students work-
ing in Computer Vision, Image Analysis, and related fields.

H. Bunke

J.J. Villanueva
G. Sanchez

X. Otazu
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CHAPTER 1

AN APPEARANCE-BASED METHOD FOR PARAMETRIC
VIDEO REGISTRATION

Xavier Orriols, Lluis Barcel6 and Xavier Binefa

Computer Vision Center, Universitat Autonoma de Barcelona
08193 Bellaterra, Spain

E-mail: xavier.binefa@uab.es

In this paper, we address the problem of multi-frame video registration using an
appearance-based framework, where linear subspace constraints are applied in
terms of the appearance subspace constancy assumption. We frame the multiple-
image registration in a two step iterative algorithm. First, a feature space is built
through and Singular Value Decomposition (SVD) of a second moment matrix
provided by the images in the sequence to be analyzed, where the variabilities of
each frame respect to a previously selected frame of reference are encoded. Sec-
ondly, a parametric model is introduced in order to estimate the transformation
that has been produced across the sequence. This model is described in terms of
a polynomial representation of the velocity field evolution, which corresponds to
a parametric multi-frame optical flow estimation. The objective function to be
minimized considers both issues at the same time, i.e., the appearance represen-
tation and the time evolution across the sequence. This function is the connection
between the global coordinates in the subspace representation and the parametric
optical flow estimates. Both minimization steps are reduced to two linear least
squares sub-problems, whose solutions turn out to be in closed form for each
iteration. The appearance constraints result to take into account all the images
in a sequence in order to estimate the transformation parameters. Finally, results
show the extraction of 3D affine structure from multiple views depending on the
analysis of the surface polynomial’s degree.

1.1. Introduction

The addition of temporal information in visual processing is a strong cue for un-
derstanding structure and 3D motion. Two main sub-problems appear when it
comes to deal with motion analysis; correspondence and reconstruction. First is-
sue (correspondence) concerns the location analysis of which elements of a frame
correspond to which elements in the following images of a sequence. From el-
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ements correspondence, reconstruction corresponds to 3D motion and structure
recovery of the observed world. In this paper, we focus on the first issue, and,
more specifically, the problem is centered on the observed motion in static scenes
onto the image plane which is produced by camera motion: ego-motion. In previ-
ous work, dense!? and sparse®> methods to estimate the motion field have been
used to this end. Sparse methods strongly rely on the accuracy of the feature
detector and not all the information available in the image is employed. Dense
methods are based on optical flow estimation which often produces inaccurate es-
timates of the motion field. Moreover the analysis is instantaneous, which means
that is not integrated over many frames. Many authors®'? focus on this registra-
tion problem in terms of 2D parametric alignment, where the estimation process
is still between two frames. Thus, taking into account that the second step, re-
construction, requires that all the transformations must be put in correspondence
with a certain frame of reference, the accumulation error can be present in these
computations.

Authors in'! introduce the notion of subspace constancy assumption, where
visual prior information is exploited in order to build a views+-affine transforma-
tion model for object recognition. Their starting point is that the training set has to
be carefully selected with the aim of capturing just appearance variabilities; that
is, the training set is assumed to be absent of camera (or motion) transformations.
Once the learning step is performed, the test process is based on the computation
of the affine parameters and the subspace coefficients that map the region in the
focus of attention onto the closest learned image. However, in this paper, the topic
that we deal with has as input data the images of a sequence that include a camera
(or motion) transformations.

In this paper, we address the problem of multi-frame registration by means of
an eigenfeatures approach, where linear subspace constraints are based on the as-
sumption of constancy in the appearance subspace. We frame the multiple-image
registration in a two-step iterative algorithm. First, a feature space is built through
and SVD decomposition of a second moment matrix provided by the images in
the sequence to be analyzed. This technique allows us to codify images as points
capturing the intrinsic degrees of freedom of the appearance, and at the same time,
it yields compact description preserving visual semantics and perceptual similari-
ties.!>714

Second, a parametric model is introduced in order to estimate the transfor-
mation that has been produced across the sequence. This model is described in
terms of a polynomial representation of the velocities field evolution. Polynomial
coefficients are related with 3D information. For instance, in the specific case of
affine transformations of a planar surface, the linear terms (0 and 1 degree) will
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contain information about its translations and rotations, the quadratic terms will
explain the projective behavior, and so forth. Each step is utilized as the input
entry to the next step; that is, once the eigen-subspace is computed, we show how
the transformations are estimated, therefore, images are registered according to
these estimates and again the eigen-subspace is built with the registered images in
the previous step. These two step are iterated until the error function converges
under a certain degree of tolerance.

The outline of the paper is as follows: section 2 frames the idea of using the
eigenfeatures approach and its relation with the parametric model of transforma-
tions. More specifically, we analyze how such an appearance subspace is built
according to a previously selected frame of reference. Therefore, a polynomial
model is introduced in order to link the appearance constraints to the transforma-
tions that occurred across the sequence. In the experimental results, section 3, we
show a new manner of encoding temporal information. We point out that when
parallax is involved in the problem of video registration, the temporal represen-
tation gives a visual notion of the depth in the scene, and therefore it offers the
possibility of extracting the affine 3D structure from multiple views. The relation
between the surface polynomial’s degree and 3D affine structure is also illustrated.
In section 4, the summary and the conclusions of this paper are shown.

1.2. Appearance Based Framework for Multi-Frame Registration

In this section, we present an objective function which takes into account ap-
pearance representation and time evolution between each frame and a frame of
reference. In this case, temporal transformations estimation is based on the fact
that images belonging to a coherent sequence are also related by means of their
appearance representation.

Given a sequence of F' images {I1,...,Ir} (of n rows and m columns) and
a selected frame of reference I, we can write them in terms of column vectors
{y1,...,yr} and yo of dimension d = n x m. Both pictures pixel-based I; and
vector-form y; of the ¢-th image in the sequence are relevant in the description of
our method. The first representation I; is useful to describe the transformations
that occurred to each pixel. The vector-form picture is utilized for analyzing the
underlying appearance in all the sequence.

Under the assumption of brightness constancy, each frame in the sequence I;
can be written as the result of a Taylor’s expansion around the frame of reference
I()Z

L(Z) = Io(&) + V1o ()" &i() (1.1)
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This is equivalent, in a vector-form, to:

Yi = Yo + 1 (1.2)

where t; is the vector-form of the second summand VI (%) @;(Z) in eq. (1.1).
First description is exploited in section 1.2.2, where the parametric polynomial
model to describe the velocity field estimates is applied. The vector-form de-
scription in eq (1.2) is employed in the following section 1.2.1 to develop the
appearance analysis respect to a chosen reference frame.

1.2.1. Appearance Representation Model

First of all, we need to define a space of features where images are represented as
points. This problem involves finding a representation as a support for analyzing
the temporal evolution. To address the problem of appearance representation,
authors in'>"'* proposed Principal Component Analysis as redundancy reduction
technique in order to preserve the semantics, i.e. perceptual similarities, during the
codification process of the principal features. The idea is to find a small number of
causes that in combination are able to reconstruct the appearance representation.

One of the most common approaches for explaining a data set is to assume
that causes act in linear combination:

yi = W& + yo (1.3)

where & € R? (our chosen reduced representation, ¢ < d) are the causes and yg
corresponds to the selected frame of reference. The g-vectors that span the basis
are the columns of W (d x g matrix), where the variation between the diferents
images y; and the reference frame is encoded.

With regard to equation (1.2), and considering the mentioned approximation
in (1.3), we can see that the difference ¢; between the frame of reference yy and
each image y; in the sequence is described by the linear combination W¢; of the
vectors that span the basis in /. Notice that in the usual PCA techniques yq plays
the role of the sample mean. In recognition algorithms this fact is relevant, since
there is assumed that each sample is approximated by the mean (ideal pattern) with
an added variation which is given by the subspace W. However, in our approach,
each image y; tends to the frame of reference y( with a certain degree of variation,
which is represented as a linear combination of the basis .

Furthermore, from eq. (1.1), the difference ¢;, that relies on the linear com-
bination of the appearance basis vectors, can be described in terms of the para-
metric model which defines the transformation from the reference frame 3o and
each image y;. This parametric model is developed in the following section 1.2.2.
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Besides, from the mentioned description in terms of a subspace of appearance,
we can see the form that takes the objective function to be minimized. Indeed,
the idea is to find: a basis W, a set of parameters {p1, ..., p, }, (that model the
temporal transformations), and a set of registered images where the squared dis-
tance between the difference obtained through the taylor’s expansion ¢; and the
projected vector in the appearance subspace W¢; is minimum, i.e.:

F
E(W"'?Z)i?"')p:‘"")zz|tl(pﬁ7"')pz‘)_W€l |2 (1’4)

i=1

The minimization of this objective function requires of a two-step iterative proce-
dure: first it is necessary to build an appearance basis, and therefore, to estimate
the parametric transformations that register the images in the sequence. In the
following sections introduce closed forms solutions for each step.

1.2.2. Polynomial Surface Model

In this section we present a polynomial method to estimate the transformation
between de reference frame I and each frame I; in the sequence. To this end we
utilize the pixel-based picture. From equation (1.1) we can see that the difference
between a frame I; and the frame of reference I relies on the velocities field
@;(Z). A s-degree polynomial model for each velocity component can be written
as follows:

—

wi(¥) = X (T) P (1.5)
where X (%) is a matrix that takes the following form:

* = [ fom)

with
Q@) =[lazyaya? ... (2% ... y°]

where Q(Z) isad x 2r, (r = (s+ 1)(s + 2)), matrix that encodes pixel positions,
and P, is a column vector of dimension 7 = (s + 1)(s 4 2), which corresponds to
the number of independent unknown parameters of the transformation. In matrix
language X (&) is a matrix 2d x 7, P has dimensions r x 1, and the velocities
corresponding to each pixel can be encoded in a matrix «; (Z) of dimensions 2d x
1. The gradient expression in the linear term of the taylor’s expansion (1.1) can
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be written in a diagonal matrix form as follows:

g, 0 ... 0 g;O 0
0g2...0 0g2...0
0 ...... gg 0 ...... gg

Stacking horizontally both matrices we obtain a matrix GG of dimensions d x 2d:
G =[G, | Gy]. Therefore, according to the vector-formin eq (1.2), the difference
t; between the i-th frame y; and the frame of reference yy, is expressed in terms
of the polynomial model through:

ti(Z, P a1 = Gax2aX (F)2dxr P |rx1 (1.6)

Given that the term Ggx 24X (Z)24x. is computed once for all the images in iter-
ation, we re-name it as ¥y, = Gax24X (Z)24x . Notice that even when images
are highly dimensional, (e.g. d = 240 x 320), the computation of ¥ can be per-
fomed easily in Matlab by means of the operator ”.*”, without incurring in an out
of memory.

1.2.3. The Algorithm

Given the parametric model for the transformations of the images in a sequence,
the objective function (1.4) can be written explicitly in terms of the parameters to
be estimated:

F
EW,Py,....,Pp)=> | WP - W | (1.7)
i=1

In order to minimize this objective function, we need a two step procedure: first
given a set of images, the subspace of appearance W is computed, and secondly,
once the parameters ﬁi that register each frame y; to the frame of reference yq
are obtained, the images are registered in order to build again a new subspace of
appearance.

a. Appearance Subspace Estimation. Consider an intermediate iteration
in the algorithm, thus, the set of registered images to be analyzed are:
{é1(y1, 131), oo, 0r(YyF, IBF)} From this set and the reference frame 7, the
appearance subspace can be performed by means of an Singular Value Decompo-
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sition of the second moments matrix®:

F
S => (i P) = v0) (61 (i, i) — yo)" (1.8)

i=1

The column vectors of W correspond to the q first eigenvectors of (1.8), that have
been previously ordered from the largest eigenvalues to the smallest one. The
projected coordinates onto the appearance subspace are: & = W7 (¢;(y;, P;) —

Y0)-

b. Transformation Parameters Estimation. Setting derivatives to zero in eq.
(1.7) respect to the transformation parameters, they are computed as follows:

B= o] uTwy, (1.9)

Note that the matrix [\IJT\I!} -t has manageable dimensions r X r, i.e. in the linear
polynomial case » = 3, in the quadratic case r = 12, etc. We can see that while
the appearance (global information) is codified in W, the local infomation which
is related to the pixels in the images is encoded in W. With this, we can see that
their combination in eq. (1.9) gives a relation between each image’s subspace co-
ordinates &; and the parameters that register each frame to the frame of reference.
Moreover, this method considers the contribution of all the frames in the sequence
to the estimation of each single set of transformation parameters. From these esti-
mates, we compute a new set of registered images {¢1 (y1, P1), . . ., ¢r (yr, Pr)}
and repeat step a. These two steps are iterated until a certain degree of tolerance
in the value obtained through the error function eq. (1.7).

1.3. Experimental Results

In order to see the range of applications of this technique, we deal with two sort of
problems. First, we study a camera movement, where it is shown the different re-
sults that appear when it comes to deal with a specific selected frame of reference.
In particular, this camera movement is a zoom that can be interpreted in terms of
registration as zoom-in or zoom-out operations depending on the selection of the
reference frame. Secondly, the significance of the polynomial’s degree is analyzed
through a sequence that includes a moving object due to a parallax effect.

This can be performed following the idea introduced in.'*
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Fig. 1.1. Some selected frames (1st, 3rd, 5th) from a sequence: 1,41,81 form the original one.

1.3.1. Selecting a Reference Frame. Consequences in the Registration

This topic is about camera operations with a single planar motion. Figure 1.1
shows three frames from a sequence of 100 frames, where a zoom-in is originally
perfomed. In this particular case, we selected 5 frames (15%,215%,415% 615¢, 815%)
from the original sequence to perform this analysis. This was motivated in order
to exploit the fact that the images have not to be taken continuously; the key point
is that they are related by the same underlying appearance. Here, we analyze
three cases depending on the selection of the reference frame: zoom-in registration
fig.1.2 and zoom-out registration fig.1.3.

Figure 1.2 shows a zoom-in registration that has been obtained selecting as
reference frame the left side image in fig. 1.1. To this end, we utilized a linear
polynomial model (1 degree), and the subspace of appearance has been built using
just one eigenvector, given that appearance is mainly conserved in the sequence.
The point is that the dimension not only depends on the error reconstruction as in a
recognition problem,'>"!# but also relies on the selection of the frame of reference.

Figure 1.2 (a) shows a time evolution of the registered sequence images, while
figure 1.2(d) the registration picture also explains the module of the velocity field
in each pixel. Latter figure gives a notion of the situation of the camera’s cen-
ter. This is highly useful to perform an analysis of camera operations from this
registration technique. Figures 1.2(b) and (c) show the estimate optical flow field,
which is computed respect to the reference frame, in some frames of the sequence.
When it comes to register from this vector field, we have to take the inverse direc-
tion that is indicated in each arrow.

Besides, even though the sequence evolution showed a zoom-in camera oper-
ation, we can register selecting as reference frame the last frame, (see right side
image in fig. 1.1). The main difference between the registrations in figure 1.2 and
figure 1.3 is the size of the final mosaic (top views of fig. 1.2(a) and fig. 1.3(a)).
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Welosity Magnitude

(d) (e)

Fig. 1.2. Zoom in: (a) Registered images according to a 1 degree polynomial model, where the first
frame has been taken as reference frame. Optical flow field corresponding to the third frame (b), and
to the last frame (c). (d) Velocity field module representation of the sequence of images. (e) Top view
of (d).

Actually, the size of the final mosaic selecting as reference frame the first frame
is equal to the reference frame. However, taking as reference frame the last frame
(case figl.3) the size of the final mosaic is bigger than the size of the reference
frame. This is clearly reflected in the module representations of the sequence
registration, figures 1.2(d) and 1.3(d).

1.3.2. Analyzing the Complexity in the Polynomial Model. Towards 3D
Affine Reconstruction

In order to get an insight into the relation between the complexity of the polyno-
mial estimation of the velocity field and the 3D affine structure which is encoded
in the image sequence, we deal with three sort of experiments. The idea is to see
the variety of possibilities that the polynomial surface model offers in this regis-
tration framework. Three cases present different relative motions across the image
sequence.
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Velocity Magnitude

Fig. 1.3.  Zoom out: (a) Registered images according to a 1 degree polynomial model, where the last
frame has been taken as reference frame. Optical flow field corresponding to the third frame (b), and
to the first frame (c). (d) Velocity field module representation of the sequence of images.(e) Top view
of (d), where the red lines show the original size of the reference frame.

First sequence of images corresponds to a camera panning operation, where
the target is an object with different depths respect to the camera position. This
fact produces a parallax effect onto the image plane, which means that the affine
model (degree 1) to estimate the velocities field is not sufficient. Figure 1.4 shows
three frames of a sequence of ten images, which have been used to perform the
first analysis of 3D motion. To estimate the introduced parametric optical flow,
we used a third degree polynomial model, which according to eq. (1.5) represents
20 parameters in the estimation process.

Registration results are shown in figure 1.5 (a) and (b), where the first frame
has been taken as reference frame. First one is a velocity field module representa-
tion of the image sequence, where is can be seen that the edge between the dark
region and the light one is in the same pixel reference coordinate position in each
frame. We use the method described in'® to estimate the 3D affine structure from
the registered images. To this end we utilized all the pixels in the images to per-
form the factorization method. This fact is present in the 3D reconstruction results
(see figs. 1.5(c) and (d)) since the union edges between planes are smoothly re-
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() (b) (©

Fig. 1.4. Three frames of a sequence of ten images. First image (a) corresponds to the first frame,
(b) is the fifth and (c) is the tenth.

produced. To reproduced properly these mentioned high frequency regions, it is
necessary to consider hard constraints in the 3D recovery step. This topic remains
a task for our future research.

(© (d)

Fig. 1.5.  Velocity field module representation (a) of the registered images, where 2 eigenvectors of
appearance and a polynomial model of 37¢ degree have been used to this estimation. Fig. (b) is the
top view of (a). Two views, (c) and (d), of the 3D affine structure of the sequence.
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Second experiment is centered on a rotating object in front of a static camera.
Figure 1.6 shows three frames of a sequence of five in the performance of this
experiment. We selected the middle frame as reference frame. This figure also
shows the optical flow respect to the reference frame. In this case we used a fourth
degree polynomial model and 3 eigenvectors of appearance. The complexity of
this sequence is shown in figure 1.7, where different views of the 3D affine recon-
struction are illustrated. The 3D reconstruction method is obtained through!> as
well. The difficulty here relies on the fact that the background is basically static.
Therefore, it should be appropriate a previous segmentation of the moving object.
This is the reason of a significantly high degree polynomial model.

Fig. 1.6. Three frames of a sequence of five images, where 3 eigenvectors of appearance and a
polynomial model of 4*" degree have been used to the registration process. Right side image shows
the estimated optical flow respect to the middle frame (which corresponds to the third one in the
sequence). Left side one is the computed optical flow respect to the middle one.

i 5§ 3

Fig. 1.7. Different views of the 3D affine structure estimation of the sequence in fig. 1.6.

Third experiment deals with a translational camera motion. Two main motion
layers are present in this sequence due to a parallax effect. Figure 1.8 shows three
frames of a sequence of five, where the tree belongs to a different motion layer
than the background (houses). Apparently, the sequence can be interpreted as a
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moving object with moving background as well. Nevertheless, the cause is the
difference in depth that the tree is situated from the background, and, moreover,
the specific movement of the camera. The registration has been performed using
2 eigenvectors of basis appearance and a 3"? degree polynomial model for the
motion field. The result of this can be seen in figures 1.9 (a) and (b). More specif-
ically, figure 1.9 (a) gives a certain notion of the relative depth among different
regions in the images, due to the module representation of the velocity field; re-
gions with higher velocity module are meant to be nearer the camera than regions
with a lower module. Figure 1.9 (b) shows a top view of (a), where the result of
registering is regarded in terms of a mosaic image. Finally, figure 1.9(c) shows the
3D affine structure estimation using,'> where all the images pixels in the sequence
have been employed. With this, we can see that the final 3D smooth surface shows
this mentioned depth difference due to parallax.

Fig. 1.8. Three frames of a sequence of five images. These images correspond to 15¢, 35 and 55¢
(from right side to left side).

() (b) (©

Fig. 1.9.  Velocity field module representation (a) of the registered images, where 2 eigenvectors of
appearance and a polynomial model of 37¢ degree have been used to this estimation. Fig. (b) is the
top view of (a). A view (c) of the 3D affine structure of the sequence.
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1.4. Summary and Conclusions

The problem of multi-frame registration has been presented through an eigenfea-
tures approach, where linear subspace constraints are based on the assumption
of constancy in the appearance subspace. One of the main contributions of the
appearance subspace encoding is that the appropriate scale in each problem is
captured from the images themselves, i.e., robust time derivatives of the optical
flow are obtained from eigenfeatures. As mentioned in section 2.1, this fact is due
to the consideration of both pictures, pixel-based and vector-form, into the same
formulation. First picture exploits local information, while the vector-form is uti-
lized for global information purposes. The aim of this is to point out that image
time derivatives are computed coupling the linear combination of the eigenfea-
ture basis and the spatial information which is provided by the polynomial surface
model (pixel-based picture). This coupling is performed in a objective function
that is minimized in order to obtain the registration of a sequence.

This approach is combined with a polynomial model for estimating the trans-
formation that has been produced across the sequence. Although the objective
function, that corresponds to the connection between the global coordinates in the
subspace representation and the parametric optical flow estimates, requires a two
step procedure, the minimization steps have been reduced to linear least squares
subproblems, whose solutions turned out to be in a closed form for each iteration.

We dealt with a variety of experiments in order to analyze the range of appli-
cations of this registration technique. One of the purposes is to see that the con-
tribution of a parametric multiframe optical flow estimation provides a smooth re-
construction of the 3D affine structure the is imaged in the sequence, where all the
pixels information is employed. Besides, from section 3.2, the relation between
the polynomial model and the 3D reconstruction has been observed qualitatively.
It is a task of future work to give a formal description of this relation. Also, the
idea of including hard constraints to the reconstruction method in this polynomial
framework is encouraging. The purpose is to keep the advantageous motion anal-
ysis estimation in terms of a few number of parameters, and, at the same time, the
future goal is to introduce prior knowledge in order to indicate where the curvature
is locally higher.
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CHAPTER 2

AN INTERACTIVE ALGORITHM FOR IMAGE SMOOTHING
AND SEGMENTATION

M. C. de Andrade

Centro de Desenvolvimento da Tecnologia Nuclear - CDTN, P.O. BOX 941,
Belo Horizonte, MG, Brazil

This work introduces an interactive algorithm for image smoothing and
segmentation. A non-linear partial differential equation is employed to
smooth the image while preserving contours. The segmentation is a
region-growing and merging process initiated around image minima
(seeds), which are automatically detected, labeled and eventually
merged. The user places one marker per region of interest. Accurate
and fast segmentation results can be achieved for gray and color images
using this simple method.

1. Introduction

Image denoising and segmentation play an important role in image
analysis and computer vision. Image denoising reduces the noise
introduced by the image acquisition process, while image segmentation
recovers the regions associated to the objects they represent in a given
image. Image segmentation typically relies on semantically poor
information, directly obtained from the image around a spatially
restrained neighborhood and, for this reason, is broadly classified as a
low-level treatment [6].

Image segmentation often requires pre- and post-processing steps,
where user judgment is fundamental and feeds information of highly
semantic content back into the process. Pre-processing is an essential
step, in which specialized filters smooth the image, simplifying it for the
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subsequent segmentation step. Interactive segmentation allows the user
to intervene directly in the segmentation process thus contributing to its
success. Additionally, post-processing may be required to complete the
task, if the segmentation itself fails to produce the desired results.

Image segmentation is an application-oriented problem. There is
no general-purpose segmentation method. The choice of a particular
technique depends on the nature of the image (non-homogeneous
illumination, presence of noise or texture, ill-defined contours,
occlusions), post-segmentation operations (shape recognition,
interpretation, localization, measurements), primitives to be extracted
(contours, straight segments, regions, shapes, textures) and on physical
limitations (algorithmic complexity, real-time execution, available
memory) [6]. Moreover, other important issues concerning fundamental
aspects of image segmentation methods such as, initialization,
convergence, ability to handle topological changes, stopping criteria and
over-segmentation, must be taken into account. Therefore, the
performance of a segmentation method can not be evaluated beforehand,
its quality can only be evaluated by the results obtained from the
treatments using the extracted primitives. However, many of the
difficulties found in image segmentation can be reduced by adequately
smoothing the image during the pre-processing step.

Segmentation by deformable models - DM describes contours, which
evolve under a suitable energy functional. The pioneer work of Kass et.
al. [12], the snakes method uses image forces and external constraints to
guide the evolution of the DMs by minimizing the energy of spline
curves and surfaces. Former versions of this method required the
initialization to be done close to the boundaries of the objects, to
guarantee proper convergence and to avoid being trapped by local
minima. The gradient vector flow [28], an improved version of the
snakes method, largely solved the poor convergence problem. The
balloon method [7] adds an inflation force to the snakes, to move the
initialized model into the neighborhood of the edges, avoiding local
minima. However, the inflation force often pushes the contour over weak
edges.

Modeling the contours in the level set framework [20, 21], easily
solves the topological problem, i.e., merging of the non-significant
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regions (or curves enveloping them). The active contours method
presented by Caselles et. al. [5] and the front propagation method
introduced by Malladi et. al [13, 14], for example, greatly simplify the
topological problem but do not address the initialization and convergence
issues. Initialization is usually difficult and time-consuming requiring the
manual introduction of polygons around the features of interest.
Convergence is also difficult since some models are still evolving while
others have finished the evolution or, worse, have leaked through weak
boundaries. The geometrical version of the active contours method is
stable and retrieves simultaneously several contours but do not retrieves
angles [5]. The bubbles method [23] simplifies the initialization process
by allowing, for instance, contours to be initialized at the image minima
or at predefined grid cells having homogeneous statistical properties.
However, bubbles method requires fine tuned parameters in order to
achieve simultaneous convergence of bubbles. Moreover, it is slow as
compared to watershed-based methods [25, 16].

Conventional region-growing and merging methods work well in
noisy images but are sensitive to seed initialization and produce jagged
boundaries. For example, the seeded-region-growing method - SRG [1,
15], introduces a competition between regions by ordering all pixels
according to some suitable criteria, a property inherited from the non-
hierarchical watershed method - NHW [25, 26]. This global competition
ensures that the growth of regions near weak or diffuse edges is delayed
until other regions have the chance to reach these areas. However, SRG
does not incorporate any geometric information and hence can leak
through narrow gaps or weak edges. Another approach, the region
competition method — RC [30] combines the geometrical features of the
DM and the statistical nature of SRG. This method introduces a local
competition that exchange pixels between regions, resulting in a decrease
in energy, thus allowing recovery from errors. However, RC produces
jagged boundaries and depends on seed initialization, which eventually
might lead to leakage through diffuse boundaries, if the seeds are
asymmetrically, initialized [19].

The non-hierarchical watershed method as proposed by Vincent [25,
26] — NHW, treats the image as a 3D surface, starts the region growing
from the surface minima, and expands the regions inside the respective
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zone of influence of each minimum. The region-growing process evolves
all over the image, stopping where adjacent regions get into contact. At
these points barriers are erected. This solution provides a powerful
stopping criterion, difficult to achieve in the PDE-based level set
framework. However, NHW may leads to a strong over-segmentation if
proper image smoothing is not provided. There are solutions to the over-
segmentation problem like CBMA [2] and Characteristics Extraction
[24], however, they depend on interactively tuning parameters related to
geometric features of the regions of interest. The watershed method as
proposed by Meyer- MW [16] starts the region-growing process from
markers. MW is optimal since each pixel and its immediate neighborhood
are visited only once. However, highly specialized filters are required to
extract the markers. Finally, the skeletally coupled deformable models
method - SCDM [19] combines features of curve evolution deformable
models, such as bubbles and region-competition methods and introduces
an inter-seed skeleton to mediate the segmentation. However, it requires
an elaborated sub-pixel implementation [19, 22].

Not intended as a comparison but only as an illustration, Figure 1
shows some of the main issues of the above mentioned image
segmentation methods. This microscopic image shows bovine
endothelial corneal cells acquired through a CCD camera attached to a
microscope. The original 256 gray-scale image is depicted in (a). The
simultaneous convergence problem can be observed in (b) using the
bubbles method with bubbles initialized at image minima and in (c) using
the front-propagation method with 36 seeds initialized by hand. Notice
that while some bubbles are still evolving, some have converged and
others are being merged. Another problem, “leaking” can occur through
weak or diffuse edges, as can be observed in (d) and (e), with seeded
region-growing method and CBMA [2] respectively. Over-segmentation
(f) results from the excessive number of local minima and occurs in
watershed method if appropriate denoising is not provided.
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Figure 1. (a) original image of bovine endothelial cells. (b) and (c) simultaneous
convergence problem. (d) leaking through weak or diffuse edges.
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]

f) over-segmentation (watershed)

(@) leaking (CBMA) K

Figure 1 cont. (e) leaking through weak or diffuse edges. (f) over-segmentation occurs if
appropriate denoising is not provided.

In this paper, an interactive algorithm for image smoothing and
segmentation — ISS is introduced. This approach overcomes some of the
limitations of previous methods, while retaining some of their most
attractive features. ISS combines a noise removal step, which preserve
the edges with an interactive image segmentation step, resulting in a
robust and easy-to-use technique where higher level knowledge about the
image can readily be incorporated in the segmentation process. ISS
simplifies the problem of initialization, and provides an integrated
solution to the problems of automatic stopping, simultaneous
convergence and over-segmentation.

2. The interactive image smoothing and segmentation algorithm -
ISS

ISS treats the image as a 3D surface in evolution. This construction
serves a dual purpose. At first, implemented in the PDE-based level set
framework [20, 21], an edge preserving smoothing algorithm removes
noise by constraining the surface to evolve according to its vertically
projected mean curvature [29, 27]. Secondly, inspired in the watershed
transformation [26] and implemented in the Mathematical Morphology
framework [3, 4, 16, 17, 25, 26, 2, 8, 9], a fast and robust algorithm
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segments the image simulating an immersion on its surface. In this
context, segmentation can be described as a region growing and merging
process starting from surface local minima. To deal with the over-
segmentation problem, ISS merges non-significant regions as the
immersion simulation takes place. The immersion obeys an order of
processing selected by the user according to a criterion based on the
image characteristics. All image pixels are previously sorted according to
the selected criterion. Sorting provides an order of processing and
assures that pixels lying around the edges have their processing
postponed. Previously sorting all image pixels in ascending order also
provides a way to make detection and labeling of the surface minima
fully automatic. A detailed explanation of the different sorting criteria
can be found in Section 2.3. ISS segments the image into as many
regions as the number of markers interactively placed by the user. This
means that one and only one marker per region-of-interest is required.
Simple rules guide the merging process: two adjacent regions, growing
around local minima, are blindly merged if they do not have markers, or
if only one of them has a marker. Hence, merging is only prevented
when two adjacent regions already having markers, get into contact. At
this point an edge has been found. These rules assure that the topological
changes required to reduce the over-segmentation be easily handled
through this merging mechanism.

Figure 2 illustrates the steps in the evolution of the ISS algorithm for
a sample of rock. Figure 2a shows a 256 gray-scale microscopic image of
a polished rock after applying the PDE based denoising filter for 10
iterations. This particular image presents sharp transitions between
regions presenting homogeneous but different intensities. A convenient
processing order can be established, in this case, by sorting pixels
according to the difference between the maximum and minimum gray-
levels (morphological gradient) inside the pixel neighborhood N(p).
Since this difference is higher around the edges, sorting all image pixels
in ascending order according to this criterion will assure that pixels lying
around the edges will be the last ones to be processed. Figure 2b shows
the morphological gradient image. Figure 2c shows the minima of Figure
2b (white spots) superimposed on it. These minima constitute the set of
seeds, which are automatically detected and labeled by the ISS algorithm
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as the evolution takes place. Figure 2d shows the 52 markers placed by
the user (colored squares) and associated to each region-of-interest. By
comparing Figures 2d and 2p it is clear that there is a one-to-one
correspondence between each marker and each region extracted by the
ISS algorithm. Figures 2d to 20 show snap-shots of the region-growing
evolution. Finally, Figure 2p shows the ISS segmentation result
superimposed on the original image, after all non-significant regions
have been merged.

As an interactive segmentation algorithm, ISS requires manual
inclusion and exclusion of markers. The user repeats the process until
satisfactory results are achieved. Interactivity improves the segmentation
results by allowing high-level information about the image to be fed back
into the process.

. (b) sorted surface

(c) seeds as light dots (local minima) (d) 52 markers placed by the user
Figure 2. ISS algorithm in action: (a) anisotropic filter, (b) sorted image, (c) seeds, (d)
markers.
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(1) snap shot 5 (j) snap shot 6

Figure 2 cont. ISS algorithm in action: (e to h) sequence of snap shots showing region
growing.
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(k) snap shot 7

(1) snap shot 8

<

(m) snap shot 9 (n) snap shot 10

(o) snap shot 11 ) (p) ISS-52 arkuers

Figure 2 cont. ISS algorithm in action: (o) last snap-shot showing final segmentation, (p)
edges and markers superimposed on the original image.
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2.1. Edge preserving smoothing under controlled curvature motion

Surface evolution under partial differential equations (PDEs) based level
set framework has successfully been used to perform both image
denoising and image segmentation. For the purpose of image denoising,
PDEs can be utilized to modify the image topology and implement an
edge preserving smoothing under controlled curvature motion [29].

By treating the image /(x,y,z(?)) as a 3D time-dependent surface and
selectively deforming this surface based on the vertical projection of its
mean curvature, effectively removes most of the non-significant image
extrema. For smoothing purposes, the surface height z at the point p(x,y)
is initialized as the value of the local gray-level. The local surface
deformation is computed from the local mean curvature x expressed by
the following relation between the second derivatives of I:

I(+1)=211,1 +1 (1+17)
K=
200+17+12)"

(1)

To evolve the image [ as a surface under this modified level set
curvature motion is equivalent to repeatedly iterate the following edge-
preserving anisotropic filter:

1t+1:1t+K (2)

Appendices A and B present ISS pseudo-code and ISS execution time
for test-images, respectively.

2.1.1. Stopping criteria for curvature based denoising

The decision regarding when to stop the iterative process depends on the
image characteristics and on the regions to be extracted. At each step, the
image is slightly “flattened” according to its local curvature. It is
important to notice that repeatedly applying this filter may “erase” the
image, therefore user judgement is crucial in deciding when to stop. If
features being extracted are relatively homogeneous a slight denoising



28 M. C. de Andrade

may be sufficient to remove noise allowing good segmentation. Images
presenting inhomogeneous regions may require more iterations, while
some images may be segmented without smoothing at all.

Figure 3 illustrates an example of image denoising using Equation 2.
The original RGB image of a butterfly is shown in Figure 3a.

(b) ISS denoising after 40 iterations

Figure 3. (a) original RGB image of a butterfly.
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-"\ b " ,

(d) median filter

Figure 3 cont. (c) denoising after 80 iterations. (d) median filter.

Figures 3b and 3c illustrate the results of applying the anisotropic
filter on the original image during 40 and 80 iterations, respectively. It
can be observed that as the number of iteration increases, regions become
more homogeneous at the expenses of loosing some fine detail. For the
purpose of comparison, Figure 3d shows the median filter applied on the
original image.
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2.1.2. Effect of denoising on the ISS

Denoising increases region homogeneity by removing or reducing local
extrema. This is translated into smoother and better-localized edges after
segmentation. Usually, the effort spent on denoising varies depending on
image characteristics. The effect of denoising on the ISS segmentation
can be perceived on Figure 4. Figure 4a shows a 256 gray-scale MRI
image of a brain slice. Figures 4b and 4c show the result of applying the
anisotropic filter described by Equation 2, for 40 and 80 iterations,
respectively. Figures 4d, 4e and 4f show the ISS segmentation result for
the corresponding filtered and non-filtered images. Notice that 40
iterations were insufficient to extract the edges. However, after 80
iterations regions became sufficiently homogeneous. It can also be
perceived that after denoising edges became less jagged and more
precisely localized.

(a) original (non-smoothed) (b) smoothed after 40 iterations

Figure 4. Effect of denoising on ISS segmentation result.
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(c) smoothed after 80 iterations (d) non-smoothed segmentation

(© ®

Figure 4 cont. Effect of denoising on ISS segmentation result, (c) after 80 iterations, (d)
to (f) segmentation results for (a) to (b).

Another example of the effect of denoising on the ISS segmentation
can be observed in the aerial image of Figure 5. In this image denoising
had little effect on segmentation, since the original non-smoothed image
already presented highly homogeneous regions and sharp transitions
between them. Comparing segmentation results in Figure 5b (non-
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smoothed) and Figure 5c¢ (smoothed during 40 iterations) shows that
denoising slightly improved the edges.

(c) segmentation after smoothing for 40 iterations

Figure 5. Effect of denoising on ISS segmentation, aerial image.

2.2. The interactive region growing and merging step

In region-growing methods, the regions are expanded around seeds
obeying a given processing order. Usually, the regions grow in
successive layers until the growing process finally stops thus defining the
location of the edges. From this perspective, the most important pixels
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are precisely those located in a narrow-band around the final location of
the edges. Sorting all image pixels according to a convenient relation
between each pixel p(x,y) and its neighborhood N(p) is, in most cases,
sufficient to impose such processing order, deferring the processing of
the pixels on the edges. Many useful relations can be used to sort the
pixels. This ordering can be established, for instance, by defining a 3D
surface whose height z, at each point p(x,y), is given by this relation.
Sorting the z's in ascending order allows the region-growing process to
automatically start from the minima of the sorted surface. The following
relations, for instance, were implemented in the ISS:

e In its simplest form, to z is assigned the value of the image gray
levels themselves; or

e z could be computed as the difference between a pixel and mean
value in N(p) as in the SRG method,

e z computed as the difference between the maximum and the
minimum values in N(p); It’s equivalent to compute the
morphological gradient;

e zas the mean curvature at p(x,y) as expressed by equation 2.

The first relation is useful when the image characteristics are such
that the gray-levels already dictate a natural processing order. In the
example shown in Figure 2a, the regions already have edges at higher
elevations than their inner parts. The second relation is useful for images
having homogeneous textures. The third relation is useful, for instance,
in images having discrete transitions between the regions having
homogeneous gray-levels, as shown in Figure 4a. In this case, taking the
difference between the maximum and the minimum in N(x), forces
higher values at the edges and, also has the additional benefit of closing
small gaps at the borders.

Finally, by adding a merging mechanism, controlled by user-placed
seeds, the region-growing and merging process is complete. A
correspondence table, as shown below, can be used to merge the regions.
This table is initialized as a sequence of integers from 1 to N, where N is
the number of minima present in the image. N is updated according to the
temporal sequence of absorptions. If, for instance, the region having
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label = 1 absorbs the region having label = 3, the merging table is
updated as shown below:

before 1 {21314 |5 |... 11 ]... |N
after 1 12 1|1 {4 (5 |...]1]... N

2.3. The ISS algorithm steps

Apply the edge preserving anisotropic filter, described by Equation 2 to

the image. Repeatedly applying this filter can erase most of the

significant information present in the image. Thus, the iterative process
has to be stopped after a reasonable result is achieved. User judgment
and the application requirements should be taken into account to decide
when to stop. See Appendix A for a pseudo-code of this algorithm.

1.By using a mouse, place one marker per region, labeling them from

1 to N. N is the total number of markers. A marker may be a single point

or a set of points of arbitrary shape.
2.Sort all image pixels in ascending order, by the address calculation

technique presented by Issac et. al. [11], according to one of the criteria
listed below:

e gray level of the current pixel;

o difference between the maximum and minimum values in the
neighborhood N(p) of the current pixel;

e difference between a pixel and the average of it's neighbors;

e mean curvature at the current pixel;

e any other criteria which can be used to defer the processing of the
edges.
3.For each pixel p extracted from the sorted list, find how many

positive labeled pixels exist in its neighborhood N(p). The three possible

outcomes are:

e There is no positive labeled pixel in N(p). The current pixel receives
a new label and starts a new region. New regions receive labels
starting from N+/. Notice that labels from 1 to N are reserved for
user placed markers. Labels starting from N+/ are reserved to seeds.



An Interactive Algorithm for Image Smoothing and Segmentation 35

e There is only one labeled pixel in N(p). The current pixel receives
this label and is integrated into the corresponding neighbor region.

e There are 2 or more positive labeled pixels in N(p). If 2 or more
neighbors have markers labels (label <= N), a border has been found,
mark the current pixel as a "border", say a -1 label. Otherwise merge
all neighbors into one region (the one having the smaller label; i.e.,
the first labeled in N(p) ) and add the current pixel to it. If there are 2
labeled pixels in N(p) and one has marker label and the other a seed
label, the one having a marker label absorbs the one having a seed
label.
4.By using a merging table, re-label all pixels to reflect the absorption

they have undergone.
5.Draw the segmented image according to the newly assigned labels.
Appendix A and B present ISS pseudo-code and ISS execution time

for test-images, respectively.

3. Applications

This section illustrates some practical results obtained with the ISS
algorithm for different classes of image and also the segmentation
obtained with other methods. Figures 6, 7 and 8 present ISS
segmentation for microscopic images of ceramic, geological and medical
images. Figure 9 illustrates the performance of ISS and other
segmentation methods on different kind of image. In the segmented
images, user selected markers are shown as green dots and the extracted
edges are shown as red lines. Figure 6a presents a micrograph of ceramic
material containing grains (dark gray) separated by thin gaps (light gray).
Observing that pixels on the edges are lighter than inside grains, they
were sorted and processed according to the original intensity of the gray
levels, i.e., from darker to lighter. Figure 6b shows the ISS segmentation
result. Figure 7a shows a color micrograph of a geological sample
containing several grains. As this image presents homogeneous regions
and discrete transitions between them, pixels were sorted in ascending
order and processed according to the intensities of the morphological
gradient (difference between maximum and minimum gray in N(p)), thus
delaying the processing of the pixels around the edges. Figure 7b shows
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the ISS segmentation result. Figure 8a shows the micrograph of a cross-
section of a human renal glomerulus containing the Bowman's capsule,
the vascular pole, and surrounding structures. Figure 8b shows the ISS
segmentation result. Again, the morphological gradient was used to sort
and process these pixels. Notice that even barely perceptible edges were
precisely extracted in these images.

- .(b) ISS segmentation (152 m;fkérs, shown as dots)

Figure 6. ISS segmentation result for a ceramic sample micrograph.
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(a) micrograph of a geological sample

o L]

(b) ISS segmentation result (75 markers, shown as dots)

Figure 7. ISS segmentation result for a geological sample micrograph.

37
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(b) 1SS segmentagion result (15 markers, shown as :iots)

Figure 8. ISS segmentation result for a human renal glomerulus
micrograph.
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Comparing the performance of image segmentation methods is not
easy, since many variables are involved in the task and the methods often
have different theoretical foundations. However, peculiarities of each
method can be observed if they are applied to a set of images having
characteristics such as irregular illumination, occlusions, reflexes, noisy
or smoothed regions, sharp or diffuse edges and regions compound of
more than one homogeneous regions. Figure 9 shows a set of images
coming from specialized application fields such as medicine (finger x-
ray and corneal endothelial cells), geology (microscopic hematite grains)
as well as from ordinary scenes (peppers and flower) which present such
peculiar characteristics. They have been chosen to briefly illustrate some
of the problems above mentioned and how they can influence current
image segmentation methods as those based on Deformable Models
(Front Propagation - FP and Bubbles - BUB), Statistical Region Growing
(Seeded Region Growing — SRG) and Immersion Simulation (ISS).
Appearing in the first column of Figure 9 are the original non-filtered
images. Second, third and fourth columns show segmentation produced
by FP or BUB, SRG and ISS, respectively. Each image was segmented
employing the same set of markers, with the exception of Figure 9j,
which do not make use of markers. Markers appear as green squares and
models - the set of points enveloping a region in evolution - as contours
in red.

Homogeneous regions and sharp transitions between them often
simplify the segmentation task. By comparing segmentation results in
Figure 9 it becomes clear that simultaneous convergence of all models
presents more difficulties to DM based methods because regions often do
not present sufficient homogeneity and sharp transitions. The speed of a
model depends on region homogeneity and its displacement is often
delayed or even stopped by discontinuities. From the practical point of
view this may result in models being pushed beyond some edges while
others are still evolving, see images (b), (f) and (r). Due to stronger noise
in image (f) model propagation is more difficult in than in image (n), for
example. Homogeneity also plays an important role in statistical based
methods like SRG, where the region growing process depends on the
average intensity of each region. SRG may be trapped by the presence of
more than one homogeneous sub-region inside a region-of-interest. SRG
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segmentation of petals image shown in image (o) illustrates this problem.
Occlusion of two regions having similar intensities often lead to leaking.
Leaking can be observed on the two peppers situated on the first plane in
ISS segmentation image (s) and SRG segmentation (t) for peppers image
and also in SRG segmented image (0). Compare segmentation results of
SRG (o) to FP (n) and ISS (p). Initialization also plays an important role
in most image segmentation methods. Usually models are initialized by
hand inside and/or outside the features of interest. In SRG seed size and
position may change region initial average intensity thus interfering in
the way model progress.

(c) SRG (d) ISS — 11 markers
Figure 9. Segmentation results for Deformable Models (FP and BUB), SRG and ISS
applied to a finger x-ray image.
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Automatically initializing models at image minima or at preferential
points as done by BUB simplifies the initialization. However,
simultaneous evolution of models inside and outside regions often results
in double edge, see image (j). Initialization in ISS is automatically done
at image minima and because regions not having markers are blindly
merged, ISS presents low sensitivity on seed size, position and noise. ISS
fails if sorting do not effectively postpone the processing of pixels lying
on the edges of the features of interest. Otherwise, ISS will produce
segmentations of very good quality as can be observed in Figure 9.

(h) ISS — 32 markers

Figure 9 cont. Segmentation results for Deformable Models (FP and BUB), SRG and
ISS applied to a micrograph of corneal endothelial sample.
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(k) SRG (D) ISS — 11 markers

Figure 9 cont. Segmentation results for Deformable Models (FP and BUB), SRG and ISS
applied to a micrograph of hematite.
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(p) ISS- 44 markers

Figure 9 cont. Deformable Models (FP and BUB), SRG and ISS applied to the flower
image.
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i i -

(s)SRG ' (t) 1SS — 32 markers

Figure 9 cont. Deformable Models (FP and BUB), SRG and ISS applied the peppers
image.

4. Conclusions and Outlook

The ISS combines some valuable features of known image smoothing

and segmentation methods developed in the Mathematical Morphology

and in the PDE-based level set frameworks, for instance:

e cfficient edge preserving smoothing guided by PDEs, typical of
surface evolution methods;
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e ability to automatically detect all image minima and to make the
regions grow inside the respective zones of influence, a property
inherited from the watershed transformation (NHW);

e ability to automatically stop the growing process whenever two user
labeled regions get into contact, a characteristic difficult to
implement in the PDE based level set framework;

e global competition between all image pixels according to a pre-
defined sorting criterion;

e ability to change the image topology by using a simple merging
mechanism, thus dramatically reducing over-segmentation and the
need of pre-processing;

e recovery from errors mediated by a user-guided segmentation;

o relatively low sensitivity to seed positioning;

e cxecution time directly proportional to image size;

e 1o need of tuning parameters;

e applicable to color or gray-scale in any number of dimensions.

However, ISS is not applicable to situations requiring automatic
segmentation, like video segmentation. As other flooding simulation
algorithms, ISS is sensitive to broken edges and may “leak” through gaps
resulting in wrong segmentation results. Color attributes could be used to
improve the segmentation algorithm.
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Appendix A. ISS Pseudo-code

Pseudo code for denoising gray-scale images. For RGB images apply the code below to

each channel.

step =n; // number of iterations.
For each step do {
For each row do {
For each column do {
Compute central difference differentials dx, dy, dxx, dyy, dxy, dx2
and dy?2 in the neighborhood N(p) of the central pixel p using
floating point arithmetic;
/* slightly modifies p at each step. */
p = (int) (p + (dxx*(1+dy2) + dyy*(1+dx2)— 2*dx*dy*dxy) /
(1+dx2+dy2) )
}

}
}

Pseudo-code for ISS segmentation.

MaxNumOfLabels = MNL; // Maximum number of labels
Obs: Labels 1 to N are reserved for markers; labels from N+1 to MNL are reserved
for seeds.
Initialize a merging table vector with labels 1 to MNL;
Place one marker per region-of-interest labeling them from 1 to N;
Sort all pixel in ascending order by the address calculation technique [11], according
to a chosen criterion, which postpone the processing of pixels lying around the edges.
For each pixel extracted from the sorted list do {
Find how many different positive label exist in N(p);
If (there is no positive labeled pixel in N(p) )
Current pixel receives a new label starting a new temporary region;
Else if (there is only one positive labeled pixel in N(p) )
Current pixel receives this label;
Else if (there is 2 or more positive labeled pixels in N(p) )
If (2 or more positive labels <= N)
Current pixel receives a “EDGE” label;
Else {
Merge all neighbors into one region; the one having the smallest positive label
in N(p);
Current pixel receives this label;
}
b

By using the merging table, relable all pixel to reflect the absorption they have
undergone.
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Appendix B. ISS Execution time for known test-images

TIME* TIME* TIME*
IMAGE |SIZE (ms) (ms/iteration)|(ms)
Denoising Segmentation
127x127  |440 15 22
LENA 256x256 |1540 51 86
512x512  |5270 176 286
1024x1024 [17850 595 1098
127x127  |440 15 22
PEPPERS 256x256 |1650 55 88
512x512  |5770 192 330
1024x1024 (19770 659 1154
127x127 1390 13 22
BOAT 256x256 |1540 51 76
512x512 5820 194 308
1024x1024 (20050 668 1154
* Figures for 30 iterations on Pentium IV class machine 1.7GHz,
768MB RAM, Windows XP

47
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CHAPTER 3

RELEVANCE OF MULTIFRACTAL TEXTURES IN STATIC
IMAGES

Antonio Turiel*

Air Project - INRIA. Domaine de Voluceau BP105
78153 Le Chesnay CEDEX. France

In the latest years, multifractal analysis has been applied to image analysis. The
multifractal framework takes advantage of multiscaling properties of images to
decompose them as a collection of different fractal components, each one asso-
ciated to a singularity exponent (an exponent characterizing the way in which
that part of the image evolves under changes in scale). One of those components,
characterized by the least possible exponent, seems to be the most informative
about the whole image. Very recently it has been proposed an algorithm to recon-
struct the image from this component, just using physical information conveyed
by it. In this paper, we will show that the same algorithm can be used to assess
the relevance of the other fractal parts of the image.

3.1. Introduction

Edge detection and texture classification are two main tasks in image processing,
recognition and classification.! Extraction of edges provides information about
the objects composing the scene, sometimes allowing segmentation; edges are
thus the main source of information in the image and serve well also for classify-
ing purposes. Texture information is more subtle, concerning the patterns and reg-
ularities inside the objects, light rendering and similar features. They also provide
an important amount of information and they are specially useful in classification
and segmentation tasks.

One of the reasons to introduce the multifractal formalism in image process-
ing was to provide a unified, reasonable way to deal with edges and textures at
the same time.> The multifractal classification splits the image in edge-like and
texture-like sets, which are arranged according to their properties under changes

*Present affiliation: Physical Oceanography Department. Institut de Cincies del Mar - CMIMA
(CSIC). Passeig Martim de la Barceloneta, 37-49. 08003 Barcelona. Spain.
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in scale (that is, under zooms). This approach is specially well adapted to certain
types of images (for instance, those of turbulent or chaotic nature, as multifractal-
ity arose to explain the statistical properties of turbulent flows), but a great variety
of real world scenes seem to be well described in this framework.?

There is another reason to use the multifractal formalism: due to some statis-
tical properties, one of the fractal components issued from the multifractal classi-
fication allows reconstructing the whole image. The implementation of the recon-
struction algorithm has been recently proposed.* That reconstruction algorithm
was designed to work over the most edge-like of the fractal components (recon-
structing from edge-like structures has been explored in several contexts from
scale-space theory> to wavelet analysis®). The key point is that the same algo-
rithm can potentially be applied to the other components of the multifractal de-
composition. The goal of this paper is to use this algorithm to evaluate the relative
importance of each one of those fractal components.

The paper is structured as follows: in Section 3.2, the theoretical fundations
of the multifractal framework are briefly explained and the main implications dis-
cussed. Section 3.3 shows how to apply the formalism in practice, in particular
to produce the multifractal decomposition. In Section 3.4 the reconstruction al-
gorithm is presented and its properties are discussed; next, in Section 3.5 we will
make use of it to obtain an assessment about the relevance of each fractal compo-
nent. Finally, in Section 3.6 the conclusions of our work are presented.

For the purposes of illustration, we will make use of Lena’s picture (Fig-
ure 3.1) and we will apply our techniques on it. The image presents remarkable
deviations from the multifractal scheme (for instance, it has fuzzy edges in out
of focus objects and numerous coding and processing artifacts), but however it is
rather well described as a multifractal object.

3.2. Multifractal framework

The multifractal formalism was developed first in the study of turbulent flows,” as
a way to explain the properties under changes of scale of very turbulent systems.
It has been applied to the study of different types of images by several authors,>®
as images have some properties which resemble to those of turbulent flows. We
briefly sketch here the basic concepts in the approach we are going to use; for
further details the reader is referred to.?

We will denote any image by ¢(Z) where & denotes the vector coordinates of
the referred pixel and it is normalized so that its average over the image vanishes,
<C(f)>feimage = 0. Acording to> we define a positive measure  as follows: for
any subset A of the image, its measure i (A) is given by:
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Fig. 3.1. Lena’s image.

HA) = /A 47 Vel () 3.1)

that is, the measure assigns a weight to the set A equal to the sum of the absolute
variations of the image over it. Texturized areas will contribute with larger weights
to the measure g than flatly illuminated, smooth surfaces. In fact we will not be
interested in the value of the measure over sets of fixed size, but in its evolution
under changes in scale (resolution) around each point. Given a collection of balls
B, (%) of radii r and center Z, we will say that the measure y is multifractal if:

p(Br(E)) ~ a(@) ) 32)

for r’s small enough. The exponent h(Z) is called the local singularity exponent,
and characterizes the way in which image behaves under changes in the size pa-
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rameter r at the particular point Z* . As we consider small 7’s, the largest values of
the measures ;1(B,-(Z)) correspond to the smallest values of the exponents h(Z).
For that reason, we will be specially interested in negative singularity exponents,
which are found at pixels which contribute strongly to the measure by themselves
(take into account that we consider very small radii). One of the advantages of this
definition is that what determines the value of h(Z) is not the absolute variation
of ¢(Z) at the point Z, but its relative importance compared to the variations at the
surrounding points: multiplying ¢(Z) by a constant modifies «(Z) in eq. (3.2), but
lefts h(Z) unchanged. The classification of points accordingly is local, in opposi-
tion with global thresholding techniques.

Natural images, that is, real word scenes of “natural” objects are of multi-
fractal character,>® what has been tested for a large variety of scenes® and even
with color images.!” This property is far from trivial, and accounts for a spe-
cial arrangement of edges and textures in images. In the following, we will only
discuss on this type of images, although the same methods could be applied to
other as well. Assessment of multifractality on real, digitized images can not be
easily performed by a direct application of eq. (3.2) because of several technical
reasons: some interpolation mechanism should be devised to take into account
non-integer radii, for instance (there may be also undesiderable long-range effects
which should be filtered; see? for a full discussion). In order to obtain a good
evaluation of the singularity exponents, singularity analysis via wavelet analysis'!
should be performed. Wavelet analysis is a quite straightforward generalization of
the scaling measurements in eq. (3.2): insted of applying the measure over finite
size balls of radii r, a convolution of the measure p with a scaled version of a
wavelet U is computed. More precisely, the wavelet projection Ty (%, ) of the
measure /. at the point & and the scale r is defined as:

P

) (3.3)

. . L1
Tun(z,r) = [ d7|Vel()—5 ¥
The measure g is multifractal (in the sense of eq. (3.2)) if and only if:

Tou(Z,r) ~ ag (@) r"® (3.4)

for small scale parameters r. Notice that oy is in general dependent of the wavelet

4The prefactor (2 in our case) in the definition of the singularity exponent, eq. (3.2), is conventionally
set to the dimension of the embedding space. This normalization allows to compare results from
subspaces of different dimensions: the value of h(Z) becomes independent of the dimension of the
space.
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¥ and the measure i, but the scaling exponent h(Z) has exactly the same value
than in eq. (3.2) and does only depend on g, that is, on the image ¢(Z) .

From the theoretical point of view, the choice of the particular wavelet W is
irrelevant for the determination of the exponents h(Z); it can be even chosen as
a positive function® . However, in practical grounds there are wavelets which
resolve better the finer structures than other. In Figure 3.2 we show the repre-
sentations of the multifractal classifications for four different wavelets. We will
discuss further about the choice of the wavelet in Section 3.3.

Multifractal classification of points is the first stage for multifractal decompo-
sition of images (what justifies the name “multifractal” for the method). Points in
the image can be arranged in fractal components, each one associated to a value
for the singularity exponent. Namely, the fractal component F},, associated to the
exponent hy is given by:

Fn, = {Z €image| h(Z) = ho } 3.5)

As the measure verifies to be multifractal, every point in the image can be as-
sociated a particular singularity exponent, so the image can be decomposed as the
union of all its fractal components. They are indeed fractal sets,” their dimensions
being connected with statistical properties of images.!> The most interesting of
those fractal components is the Most Singular Manifold (MSM),’ which is the
fractal component associated to the least possible exponent. This set is usually
related to the edges present in the image.” The least possible exponent is usually
denoted /o, and its associated manifold F},__ is generally denoted F, in short.

3.3. Multifractal decomposition

A correct determination of the MSM F, implies a good multifractal decompo-
sition, according to what was explained in Section 3.2. The main point concerns
the choice of the analyzing wavelet ¥. Once the wavelet is fixed, the singularity
exponents are computed at every point in the image. The exponents are obtained
by means of a log-log regression applied to eq. (3.4) at every point, in a range
of scales typically going from 1 to 8 pixels non uniformly sampled (see”). Once
every point is assigned a singularity exponent, the value of h is estimated. A
usual way to do this consists of taking the average between the values associated
to the 1% and the 5% most singular points.> The dispersion around this value is

PLet us remark that the normalization in the wavelet ¥ elliminates the prefactor 2 in the exponent.
Positive functions are not proper (admissible) wavelets (an admissible wavelet has zero mean'!).
Recall that the admissibility condition is necessary for signal representation (reconstruction), but not
for signal analysis.
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conventionally fixed depending on the application. In Figure 3.2 we present the
functions h(Z) for four different wavelets. Let us define them. Let & = (z1,x2)
be the position vector, 7 = /2% + 23 its modulus. We will make use of the
following wavelets ¥, (%), i = 1,2, 3,4:

(1) Lorentzian wavelet:

1

L@ = 1

(2) First radial derivative of Lorentzian wavelet:

(3) Gaussian wavelet:

(4) Second radial derivative of gaussian wavelet:

I 2 i
U, (%) = drzl = (r* —1)e 2

Each one of those wavelets fits the best for a particular application. Lorentzian
wavelet (W, ) is a possitive wavelet of slow decay at infinity. It is very good to re-
solve sharp (negative) singularities in the measure p (good spatial localization),
but it has the backdraw of being unable to distinguish all the singularities beyond
h = 0 (it returns the value h = 0 for all of them); besides, it cannot be used to
analize the signal ¢(Z) directly (a certain number of vanishing moments would
be requiredz’”). The gaussian wavelet (¥, ) cannot be either used over the signal
itself, as it is positive also, but having fast decaying tails it is able to resolve the
whole range of singularities (typically between —1 and 2, see?); the backdraw
is a worse spatial localization, specially for the MSM. The second derivative of
the gaussian (V,) is, from the theoretical point of view, the best possible choice
for analyzing signals: it resolves the whole range of values of h(Z) and it can
be even used over the signal itself, without necessity of constructing a measure.
However, in practice it has very poor spatial localization, associated to an inner
minimum scale of several pixels, necessary to separate positive from negative ex-
trema in wavelet projections. The best choice in practice is then the derivative of
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Fig. 3.2. Multifractal decompositions on Lena’s image for Lorentzian wavelet and its derivative (top)
and Gaussian wavelet and its second derivative (bottom) (see Section 3.5). The smaller is the singular-
ity exponent, the brighter is the point.

Lorentzian wavelet (U, ), which arrives to a compromise in range of detected sin-
gularities, localization and applicability over the full signal. It is not well adapted
for any one of those tasks (it truncates the range of singularities above i = 1, it
blurs localization, it has not enough number of vanishig moments), but it is able
to provide meaningful results in every context.

In Figure 3.3 several different fractal manifolds for our image are represented,
every column showing the sets associated to each one of the wavelets discussed
above. The first step is to compute ho, as described at the beginning of this Sec-
tion, obtaining the different values for the different wavelets: ho, = —0.47 for
U, hoo = —0.32for ¥,, hoo = —0.43 for ¥, and hoo = —0.68 for ¥,. Asa
general remark, wavelets with higher orders of derivative are more imprecise in
the determination of this value, while positive wavelets throw more similar results.
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Fig. 3.3. Multifractal decompositions on Lena’s image. From left to right: Lorentzian wavelet, its
derivative, Gaussian wavelet and its second derivative. From top to bottom: excluded manifolds,
MSMs, second MSMs, third MSMs, fourth MSMs and fifth MSMs.
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Once the value of h, has been obtained, we isolate the MSM, defining it as the
set of points Z for which hoo —Ah < h(Z) < hoo+Ah with a conventionally fixed
value of the dispersion Ah; in the following we take Ah = 0.15. We represent
also the other fractal manifolds according to the given dispersion, so the nth MSM
will be the set of points & for which ho, 4 (2n—3)Ah < h(Z) < hoo+(2n—1)Ah
(the MSM itself is the first MSM). Finally, we define the manifold of excluded
points or excluded manifod as the set of points 2 such that (%) < hoo — Ah, that
is, which are more singular than expected. Those events are generally associated
to the borders of the image and some particular events, which happen to have
singularities close to —1, typical to isolated edges.” In Figure 3.3, we show all
those manifolds.

3.4. Reconstructing from edges

Recently, an algorithm to reconstruct the whole image from the most singular of
its fractal components has been proposed.* We will not go into details about the
reconstruction algorithm; we will just present the final formula and discuss it. The
reader is referred to the original paper.

The reconstruction formula intends to reproduce the whole image from the
value of the gradient field over the MSM. First, let us define the essential gradient
over a general set F'. We define it as a vector function which is only different from
zero over the set F', namely:

7.(2) = Ve(@) 6p(2) (3.6)

where the symbol § stands for a delta function on the set F'. The reconstruction
algorithm is given by the following expression:

c(¥) = go v, () (3.7)

where ® stands for the convolution and the reconstructing kernel g is given in the
Fourier space by the following expression:

g(f) = i< (3.8)

In the above expression, the symbol " stands for the Fourier transform, f is
the spatial frequency (the variable in the Fourier domain) and ¢ = /—1. The
reconstruction formula states that it is possible to retrieve the image from the
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essential gradient associated to the MSM F,. Note, however, that the formula
could be applied to any set ['; we will denote by c,, the image retrieved from the
essential gradient associated to the set F'; namely:

CF(:E) = §®6F(f) (3.9)

We will call eq. (3.9) the generalized reconstruction formula. In this language,
the reconstruction formula states that c¢,, = c. The generalized reconstruction
formula has some nice properties.

e [t is linear in the reconstructing data: If the set F' is the disjoint union of two
sets F1 and Fj (i.e., FF = Fy U Fy, with Fy N Fy = ), then ¢, = ¢, +c,,.
This comes from the fact that Uy, ., = U, + Uy, if the sets are disjoint, and
the associativity of the convolution product.

e It always exists a set from which reconstruction is perfect: If F = R2, that is,
the whole image, 7, = Ve, butas Ve(f) = —ifé(f) and taking into account
the definition of g, trivially ¢, = c.

Taking into account both remarks, we conclude that if /'° is the complemen-
tary set of a set I, ¢, + ¢,. = ¢, which can also be expressed as ¢ — ¢, = c,.,
that is, the reconstruction from the complementary of I is equivalent to the er-
ror image (the difference between the reconstruction and the actual image). The
reconstruction formula states that there exists a rather sparse set Iy, from which
the reconstruction is perfect (equivalently, the reconstruction error is zero). In
practice, however, a good determination of Fi, is sometimes difficult. In such
cases, the generalized reconstruction formula allows measuring how relevant the
points not included in that set are, for instance just measuring the PSNR’s for the
reconstructed images. Due to linearity, the same measure can be interpreted as the
decrease in the error associated to the inclusion of those points in the estimate of
F . We apply those ideas in the next section to interpret the importance of the
different fractal components extracted according different wavelet projections.

3.5. Relevance of the fractal manifolds

We will make an assess about the relative importance of the fractal manifolds
by means of the generalized reconstruction formula. In Figure 3.4 we show the
different images reconstructed from the manifolds presented in Figure 3.3 using
eq. (3.9); in Table 3.1 the associated PSNRs can be found. We see that the MSM
provides always the greatest amount of information about the image, which is
reflected both by visual inspection and the values of the PSNR. However, the
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second manifold contains a significant amount of information, which reflects in
the recogniscible structures which are reconstructed from it and still significant
values of PSNR (in the case of the Lorentzian wavelet (first column), the second
MSM contains all the other points, because it is not able to distinguish singularities
above h = 0 and they are truncated to that value). The other manifolds (when they
can be distinguished, that is, when considering wavelets other that Lorentzian)
contain significantly very few information.

The excluded manifold deserves a particular comment. It contains very sharp
edges and it accounts for global illumination conditions (for instance, more light
over the hat or the shoulder, the global focus on the right of the image,...). It should
be included in any reasonable reconstructing set, even if their statistical properties
(due to boundary conditions or strong fluctuations) may constitute a deviation
from the multifractal model (as they more singular than what is predicted by the
model).

The relative importance of each fractal part can be better understood looking
at Figure 3.5, in which images in Figure 3.4 are progressively summed up from
top the column to the bottom; due to linearity of eq. (3.9), the resulting images are
equivalent to the result of reconstructing from the succesive union of manifolds in
Figure 3.3. It is obvious from visual inspection that after the second manifold very
few information is incorporated in the successive additions, a fact also evidenced
by the associated PSNRs, Table 3.2.

3.6. Conclusions

In this paper we have recalled the multifractal formalism, which stands to be a
method for classifying points in images according to their singular character. We
have seen that this rather mathematical characterization (the singularity exponent)
has an interpretation in terms of relative informative relevance: the most singular
points are the most informative about the scene. This characterization of the infor-
mational content is made by means of the reconstruction algorithm,* which was
proposed as a way to reconstruct images from edges, derived from simple, general
assumptions. The properties of the reconstruction algorithm allow to isolate the
contribution of every point in the final reconstructed image. We have made use of
it to assess the qualities as reconstructing sets of the different fractal components
spawned in the multifractal scheme.

The method proposed here could be used to determine which properties
(edges, textures) are important to keep in order to have a good visual performance
in compressed images and which ones could be removed without affecting sig-
nificantly the quality. It is a rather natural technique, as it is based on physical
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Fig. 3.4. Reconstruction images from the sets represented in Figure 3.3.

properties of images. It is important to notice that the reconstruction algorithm
can be considered an edge-detection based coding scheme, much in the way of



Table 3.1.  PSNRs (in dB) for the reconstructed images represented in Figure 3.4.
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Y

1

Y

2

Y

3

Y

4

14.54

14.40

14.26

14.27

17.22

15.48

16.19

14.45

14.76

14.31

15.25

14.73

13.32

13.30

13.47

15.17

13.32

13.30

13.24

14.09

13.32

13.32

13.29

13.46
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the modern techniques of ridgelets and curvelets,'* which have been shown to be
very efficient for image coding.

In order to implement compressing techniques using the reconstruction algo-
rithm, high performance reconstructing sets should be extracted from images. The
technique of singularity classification is a good first approach to obtain that set,
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Fig. 3.5.  Accumulated reconstructed images, from the reconstructed images in Figure 3.4.

but the multifractal model is just approximate for general real word images (it
was derived for a subset of so-called natural scenes) and so the MSM is just an
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Table 3.2.  PSNRs (in dB) for the accumulated reconstructed images represented in Fig-
ure 3.5.

v Y Y v

1 2 3 4

14.54 14.40 14.26 14.27

17.66 15.89 15.49 14.86

7042 | 26.66 | 22.46 15.86

70.80 | 52.04 | 31.52 | 20.73

70.80 | 70.80 | 43.01 27.27

70.80 | 70.80 | 48.85 | 35.52

approximation to the best reconstructing set. Besides, singularity detection is a
complicated technique, which requires fine tuning in the choice of the analyzing
wavelet. In spite of all those backdraws, it is possible to obtain good performance
just using singularity analysis (see Figure 3.6). From a more general perspective,
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however, other methods for the extraction of the reconstructing set need to be
devised.

Fig. 3.6. Left: MSM with Lorentzian wavelet, hoo = —0.5 £ 0.2. Right: reconstructed image
(PSNR=24.52 dB).
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Deformable Models are extensively used as a Pattern Recognition technique.
They are curves defined within an image domain that can be moved under the
influence of internal and external forces. Some trade-offs of standard deformable
models algorithms are the selection of image energy function (external force),
the location of initial snake and the attraction of contour points to local energy
minima when the snake is being deformed. This paper proposes a new proce-
dure using potential fields as external forces. In addition, standard Deformable
Models algorithm has been enhanced with both this new external force and al-
gorithmic improvements. The performance of the presented approach has been
successfully proved to extract muscles from Magnetic Resonance Imaging (MRI)
sequences of Iberian ham at different maturation stages in order to calculate their
volume change. The main conclusions of this paper are the practical viability
of potential fields used as external forces, as well as the validation of the algo-
rithmic improvements developed. The feasibility of applying Computer Vision
techniques, in conjunction with MRI, for determining automatically the optimal
ripening time of the Iberian ham is a practical conclusion reached with the pro-
posed approach.

69
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4.1. Introduction

Active Contours (or snakes) are a low-level processing technique widely used to
extract boundaries in many pattern recognition applications.! In this paper, an im-
proved snake is proposed to recognise muscles in MRI sequences of Iberian ham
in different maturation stages. In the next subsections, an overview of the Active
Contours is presented, and the relationship with the field of Food Technologies
is exposed. In addition, the algorithm design is presented in section 2, and the
obtained results are discussed in section 3. Conclusions are shown in section 4.

4.1.1. Overview on Active Contours

Deformable models are curves defined within an image domain that can be moved
under the influence of internal forces, which are defined within the curve or sur-
face itself, and external forces, which are computed from the image data. The
internal forces are designed to keep the model smooth during deformation. The
external forces are defined to move the model toward an object boundary or other
desired features within an image.”

Energy-minimising Active Contour models were proposed by Kass et al.?
They formulated a model using an energy function. They developed a controlled
continuity spline which can be operated upon by internal contour forces, images
forces, and external forces which are supplied by an interactive user, or potentially
by a higher level process. The goal was to obtain a local minimum that seems
most useful to that process or user. An algorithmic solution involves derivation of
this objective function and optimisation of the derived equation for finding an ap-
propriate solution. However, in general, variational approaches do not guarantee
global optimality of the solution.*

Amini et al.* also proposed a dynamic programming algorithm for minimis-
ing the functional energy that allows addition of hard constraints to obtain a more
desirable behaviour of the snakes. However, the proposed algorithm is slow, hav-
ing a great complexity O(nm?), where n is the number of points in the contour
and m is the size of the neighbourhood in which a point can move during a single
iteration.*>

Cohen’ proposed an additional force that made the curve behave like a balloon
which is inflated by this new force. On the other hand, Williams and Shah® de-
veloped a Greedy algorithm which has performance comparable to the Dynamic
Programming and Variational Calculus approaches. They presented different for-
mulations for the continuity term, and they examined and evaluated several ap-
proximations for the curvature term. The proposed approach was compared to the



Potential Fields as an External Force and Algorithmic Improvements in Deformable Models 71

original Variational Calculus method of Kass et al. and the Dynamic Program-
ming method developed by Amini et al. and found to be comparable in the final
results, while having less computational cost than Dynamic Programming (lower
complexity) and being more stable and flexible for including hard constraints than
the Variational Calculus approach.

Kichenassamy’ presented a new Active Contour and surface model based on
novel gradient flows, differential geometry and curve and surface evolutions. This
led to a novel snake paradigm in which the feature of interest may be considered
to lie at the bottom of a potential well.

In addition, Radeva et al.® proposed new approaches incorporating the gradi-
ent orientation of image edge points, and implementing a new potential field and
external force in order to provide a deformation convergence, and attraction by
both near and far edges.’

Mclnerney and Terzopoulos'® also developed a parametric snake model that
had the power of an implicit formulation by using a superposed simplicial grid to
quickly and efficiently reparameterise the model during the deformation process.

To reduce the problems caused by convergence to local minima, some authors
have proposed simulated annealing as well as multiscale methods.'! Prez et al.'?
presented a new technique to construct Active Contours based on a multiscale
representation using wavelet basis. Another approach to deal with this problem
was proposed by Giraldi et al.'* They presented the Dual Active Contour Model,
which consisted basically in comparing one contour that expands from inside the
target feature, and another one which contracts from the outside. The two contours
were interlinked to drive the contour out of local minima, making the solution less
sensitive to the initial position.

Caselles et al.'* proposed a Geodesic Active Contour model based on energy
minimisation and geometric Active Contours based on the theory of curve evo-
lution. They proved that a particular case of the classical energy snake model is
equivalent to finding a geodesic or minimal distance path in a Riemannian space
with a metric derived from the image content. This means that under a specific
framework, boundary detection can be considered equivalent to finding a path of
minimal weighted length via an Active Contour model based on geodesic or local
minimal distance computation. Nevertheless, no method has been proposed for
finding the minimal paths within their Geodesic Active Contour model.!> Gold-
enberg et al.'® proposed a new model, using an unconditionally stable numerical
scheme to implement a fast version of the geodesic Active Contour model.

Xu and Prince!” developed a new external force for Active Contours, which
they called Gradient Vector Flow. This new force was computed as a diffusion
of grey-level gradient vector of a binary edge map derived from the image. The



72 A. Caro et al.

corresponding snake was formulated directly from a force balance condition rather
than a variational formulation.'®

Ballerini'® proposed an energy minimisation procedure based on Genetic Al-
gorithms. These Genetic Algorithms operate on the position of the snake, and
their fitness function is the total snake energy. A modified version of the image
energy was used, considering both the magnitude and the direction of the gradi-
ent and the Laplacian of Gaussian, though the region of interest is defined by an
external user.

Park and Keller?® presented a new approach that combines Dynamic Program-
ming and the watershed transformation, calling it the Watersnake. The watershed
transformation technique is used to decide what points are needed, in order to
eliminate unnecessary curves while keeping important ones.

4.1.2. Scope and purpose of the research

Image segmentation is a very important aspect of the Computer Vision techniques.
It could be applied in the field of Food Technology to determine some features
of this kind of images. Particularly, Iberian ham images were processed in this
research in order to find out some characteristics and reach conclusions about this
excellent product. The Iberian pig is a native animal bred from the south-western
area of Spain, and dry-cured ham from Iberian pig is a meat product with a high
sensorial quality and first-rate consumer acceptance in our country. The ripening
of Iberian ham is a lengthy process (normally 18-24 months).

Physical-chemical and sensorial methods are required to evaluate the different
parameters in relation with quality, being generally tedious, destructive and ex-
pensive.?! Traditionally, the maturation time is fixed, when the weight loss of the
ham is approximately 30%.%> So, other methodologies have long been awaited by
the Iberian ham industries.

The use of image processing to analyse Iberian products is quite recent. Some
researches?> have processed flat images taken by a CCD camera from Iberian
ham slices for different purposes. They estimated some parameters in Iberian ham
like intramuscular fat content® and marbling®® or classified various types of raw
Iberian ham.?* The obtained results are very encouraging and suggestive to its
application for the systematic inspection of Iberian products. However, although
Computer Vision is essentially a non-destroying technique, ham pieces must be
destroyed to obtain images using these techniques.

MRI (Magnetic Resonance Imaging) offers great capabilities to non-invasively
look inside the bodies. It is widely used in medical diagnosis and surgery. It
provides multiples planes (digital images) of the body or piece. Its application to
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the Food Technology is still recent and it is confined for researching purposes.

Cernadas et al.?*?% analyse MR images of raw and cured Iberian loin to clas-
sify genetic varieties of Iberian pigs and to predict the intramuscular fat content.
The results are promising to its application to ham.

The loin is an uniform and simple muscle, and this is a very important advan-
tage, comparing with the great number and complex distribution of muscles of the
ham, being this one a significant drawback.

In a previous work,*! classical snakes (mainly the greedy algorithm) have been
applied to ham MRI sequences to extract boundaries of the Biceps Femoris mus-
cle. Although the obtained results were nearly satisfactory, the method suffers
from robustness for others muscles. This is one of the reasons because of the
Quadriceps muscle has been studied in this paper too. An enhanced Active Con-
tour approach is proposed, based on the use of potential fields as external force
and the improvements of the standard greedy algorithm for taking into account the
peculiarities of the particular environment.

This new method is applied over a database of specific MR images from Food
Technology, particularly Iberian ham images obtained at four different maturation
stages (raw, post-salting, semi-cured and cured ham). Deformable Models are
used to achieve the extraction of different muscles (Biceps Femoris and Quadri-
ceps), studying their volume changes during the ripening of Iberian ham. The
verification of the presented approach is shown examining these muscles, and the
obtained practical results may allow us to design a methodology to optimise the
ripening process.

4.2. Algorithm Design

A standard Active Contours overview is presented in section 2.1. In section 2.2,
some particular problems and algorithmic improvements are presented. The en-
hanced algorithm is used in conjunction with real MR images (section 2.3).

4.2.1. Standard Deformable Models

Deformable Models (Active Contours, or Snakes), are curves that can be moved
due to the influence of internal and external forces.! These forces are defined so
that the snake can detect the image objects in which we are interested.?® Active
Contours are defined by an energy function. By minimising this energy function,
the contour converges, and the solution is achieved.

An Active Contour is represented by a vector, v, which contains all of the n
points of the snake. The functional energy of this snake is given by:
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FE = /[Emt (’U(S)) + Eimage(v(s))]ds

= /[Q(S)Ecom(v(S)) + B(8) Ecuro (v(s)) + ¥(5) Bimage (v(s))lds  (4.1)

FEip: is the internal energy of the contour. It consists in continuity energy
(Econt) plus curvature energy (Eeurv). Eimage represents the proper energy of
the image, which is very different from one image to another.

«, 0 and +y are values that can be chosen to control the influence of the three
terms.’*3! For example, a large value of - means that the energy image is more
significant than the rest. When a discontinuity occurs at a point, « is zero. [ is
zero in corners of the image (null curvature energy).333*

The algorithm is iterative, and during each of the iterations, energy of the m
neighbours is computed for each one of the n points of the snake. This point is
moved to the neighbour having the lowest energy of the neighbourhood.

The continuity energy attempts to minimise the distance among points of the
snake. The algorithm uses the difference between the average distance among
points, d, and the distance between the two points under consideration: d — |v; —
Vi—1 |

The curvature energy could be computed in many forms. We used the expres-
sion |v;—1 — 2v; + vi+1|2, which uses the distance between one point and the
previous one, and so on.

The image energy is a gradient magnitude.'”!332 At each point in the image,
gradient magnitude has a normalised value in 0 — 255, in order to have the same
range as the other energy terms.

In our particular case, the points of the image with higher gradient values are
located in edges. Therefore, points with small gradient measures are situated in
the center of some image object delimited by edges.

The image energy is the only information that the algorithm has about the
image on which it is working.>3 The other terms of energy (E.on: and E ;)
in the general equation to minimise are based on distances among points of the
snake, but they do not use any specific information of the image. Then, it is
extremely relevant to find a good image energy function,'” in order to control the
correct evolution of the Active Contour. It is the only way the algorithm has to get
information about the image.
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4.2.2. The new approach for Deformable Models

The internal forces of Deformable Models are designed to hold the curve together
(elasticity forces, i.e. FE.opnt) and to keep it from bending too much (bending
forces, i.e. E.,.,). Typically, the external forces are defined as a gradient of
a potential function. Both internal and external forces attempt to drive the curve
toward the edges (object boundary) or other desired features within an image. Un-
fortunately, the initial snake often needs to be placed near to the searched border.
Furthermore, Active Contours have difficulties progressing into concave bound-
ary. Then, selecting correct external forces that solve these problems is highly
recommended.

One of the proposed ideas in this work consists in creating potential fields,
using them instead of traditional external forces. The purpose of building these
potential fields is to move the points of the contours toward the object boundary,
not only when they are situated close to the borders, but even when they are not
located near to the edges. A traditional potential force cannot attract distant points
or either moves them into concave boundary regions, being these two key diffi-
culties with standard Active Contour algorithms. A potential field is developed
for solving these problems, and it is presented in this section. Capture range for
snakes has been extended, and concave regions could be explored using this new
field. These are the main advantages of using this field as an external force for the
Active Contour.

The potential fields are computed in a two steps algorithm. The algorithm is
described as follows:

As a first stage, edge map images are necessary before computing the potential
field, in order to determine the object initial boundary. These primary borders will
be used to increasingly grow the potential field.

A 7z7 Gausian filter has been used to smooth the images. The filter size is
either 13213 or 15x15. The goal is to smooth the images converting similar tex-
tures in homogeneous grey levels, avoiding dissimilarities. A 3z3 Sobel operator
is applied, obtaining the edge images.

Although the edge images apparently seem to be almost black (except for
edges, which are shown in a light white colour), they contain a great variety of
data. This extra information is found in dark grey levels, and needs to be equalized
to obtain an adequate binary image. The equalisation process converts the grey
levels of the edges to values close to 255. After that, the images are converted to
binary using a threshold. This value is calculated considering the grey level which
divides the histogram in two parts: the black colour (80% of the total pixels) and
the white colour (the other 20%).
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This bi-level image is used as an edge map to grow the potential field, so
removing all the groups of isolated pixels is desirable. These groups of noisy
pixels can seriously affect the potential field, producing a local convergence for
the snake algorithm (global minimum would not be assure). Eliminating islands of
pixels is a remarkable task in the pre-processing stage. A recursive process based
on a growing seed is developed for finding islands of pixels with a size (number
of pixels) lower than a given value (48 or 96 pixels, depending on the image).

Therefore, the original image has been filtered, equalized, converted to binary
level and processed to eliminate the undesirable noise, just before the potential
field is computed (see Figure 4.1).

Gausian Sabel Removing Computing the
Filter aperator  Equalising  noisypixels  patential fleld

LsASsU=s =

Criginal Filtered Segm ented Binary Fdge map Potential
image image trage image image field

Fig. 4.1. Obtaining the potential field.

As a second step, the potential field is calculated as a degradation (diffusion) of
the binary edge map derived from the image. Considering the bi-level image has
white edges (level 255) and black background (level 0), the developed algorithm
produces a colour degradation (potential field) in the background points between
points of boundaries, as Figure 4.2 shows.

Edge Background (degraded values) Edge

A
~ ~

‘ 255 ‘ 254 ‘ 253 ‘ 252 ‘ 251 | 250 ‘ 249 ‘ 250 ‘ 251 ‘ 252 ‘ 253 ‘ 254 ‘ 255 ‘ a) Numerical Values
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Fig. 4.2. The calculated potential fields between two points of boundaries.

In this way, images containing potential field magnitudes have been calcu-
lated. For each point of the image, the potential field is computed, obtaining a
new image, with the same dimensions as the original, which contains the potential
field value for each one of the image points.

Contour initialisation is one of the main problems of the Deformable Mod-
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els. The snake must be developed to find the object searched for. An automatic
algorithm has been developed to place an initial contour inside the images.

For its realisation, the potential field image is known. Searching inside the
images in order to find the points with the smallest values is required. The key is
to distribute all the points of the contour surrounding all those points of the image
with smallest potential field values. In this manner, it is ensured that the snake will
evolve towards the edges of the object, searching for points with levels of energy
smaller than the energy values of the points in the initial snake.

While the contour is being deformed another difficulty could arise: some
points of the contour could be attracted to the same place and cross over their
trajectories (Figure 4.3.a). This is highly undesirable, because great amounts of
nodes situated near by do not have significant information in the recognition task.

Moreover, contours with dots that cross over their trajectories (Figure 4.3.b)
would be useless. The goal is to distribute all the nodes of the snake in such a way
that they determine the object contour in the best way possible. A procedure has
been added to eliminate the nearest knots and aggregate new points between the
most distant nodes (Figure 4.3.c).

Figure 4.3 shows a 7-point contour. Points 3 and 4 cross over their trajectories
during the evolution of the curve (Figure 4.3.a), producing a non-desirable snake
(Figure 4.3.b). The algorithmic improvement remove one of this two points when
they are getting closer (Figure 4.3.c), adding a new point in the middle of the
largest segment (between the points 1 and 7 from the initial situation is added a
new one, renaming all the points).

i

Fig. 4.3. One of the developed algorithmic improvements.

A serious effort in the pre-processing stage is necessary to ensure successful
object recognition using Deformable Models. The image processing phases (pre-
processing stage) could be considered as algorithmic improvements, due to the
final program deal with processed images, instead of the original ones.
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4.2.3. A practical application: Deformable Models on Iberian ham MRI

The evolution study of the Iberian ham muscles during the ripening process could
be one of the goals to confirm the practical viability of using the proposed ap-
proach. Muscle recognition could be used for determining the fat content and
its distribution, as well as for studying how the hams evolve in their maturation
process.

The presented research is based on MRI sequences of Iberian ham images.
One of the images of these sequences is shown in figure 4.4.a. A technique to
recognise the main muscle structures (Biceps Femoris and Quadriceps) is em-
ployed. Four Iberian hams have been scanned, in four stages during their ripening
time.

The images have been acquired using an MRI scan facilitated by the “Infanta
Cristina” Hospital in Badajoz (Spain). The MRI volume data set is obtained from
sequences of T1 images with a FOV (field-of view) of 120285 mm and a slice
thickness of 2mm, i.e. a voxel resolution of 0.23x0.20x2mm. The total number
of images of the obtained database is 336 for the Biceps Femoris, and 448 for the
Quadriceps muscle.

As a previous step, a pre-processing stage is introduced, in order to compute
the potential field values (Figure 4.4.b and 4.4.c). Therefore, images containing
potential field magnitudes have been calculated.

In addition, the initial snakes for the central images of the sequence have been
previously calculated too (Figure 4.4.d). When the final snake for this image has
been achieved, this final contour is automatically modified, and a scaled version
(the same contour, but smaller) of the final snake is selected as the fist contour for
the immediately preceding and succeeding images.

Once the complete database of images and the initial values of the snakes for
these images are set, the application of Active Contours to compute the area of the
muscle is needed. The greedy algorithm runs over the central image. The snake is
initialised with the computed values, and next, the algorithm finishes after further
iterations, and the final snake is reached for this image (Figure 4.4.e). This snake
determines the area of the muscle over the image.

The next step is based on applying this final snake for the central image as
an initial snake for the following image, as it was previously mentioned. In such
a manner, the final snake that could be used as initial for the next image of the
sequence is obtained. Similarly, the final snake achieved in the central image
could be used as an initial snake for the previous image, and so on.

The final step computes areas and volumes for the extracted muscles (Fig-
ure 4.4.f). Calculating the surface of the final obtained snake for each image is
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possible to determine the volume for the muscle.

Fig. 4.4. Algorithm design for the practical application. (a) Original image. (b) Map image. (c)
Potential field. (d) Initial snake. (e) Final snake. (f) Area of the muscle.
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4.3. Practical Results and their Discussion

The standard Deformable Models algorithm haven been algorithmically enhanced,
and potential fields have been employed as external forces. A new approach has
been successfully proved in a practical application, using these two key ideas.

The obtained practical results show how the potential field, used as external
forces for Deformable Models, seems to be an acceptable solution for finding pat-
terns (muscles in the proposed practical application). It is not necessary to place
the initial snake near to the searched border, and all the difficulties in progressing
into concave boundary have been solved using potential fields in conjunction with
all the algorithmic improvements. Both Biceps Femoris and Quadriceps muscles
have been satisfactorily recognised for most of the images of the database (Figure
4.5). Therefore, it could be considered as a good enough argument to decide the
validation of the proposed algorithm.

A comparison of the muscles size (obtained using the proposed technique)
during the maturation stages is shown in Figures 4.6.a and 4.6.b for the Biceps
Femoris and the Quadriceps muscles, respectively.

The practical application of the enhanced Deformable Models algorithm
shows how the volume reduction of the Iberian ham during its ripening stages.
Both new external forces and algorithmic improvements have been successfully
proved, reaching suitable results equally in the two studied muscles.

The results presented in Figure 4.6 show a size reduction of almost 10% as an
average, between the initial stage (raw) and the second one (post-salting), for both
muscles. Comparing the post-salting and semi-dry stages, the average decrease is
about 20%, and the size reduction produced between the semi-dry and cured-dry
stages is of nearly 15% as an average, for both muscles. The approximate average
ratio is 45% at the end of the maturation process, 21 months after the initial stage,
for both Biceps Femoris and Quadriceps muscles.

Food Technology specialists have estimated the total weight decrease in the
Iberian ham during the same time at 30%. This way, a relationship between the
ham weight (30%) and muscle size (45%) could be established for the maturation
time, as a first approximation. Thus, a more complete study is necessary.

These weight decreases could be caused by the loss of water during the mat-
uration time. Optimal ripening time could not be the same for different Iberian
pig hams. By studying the percentage rate of volume during the ripening process,
it was possible to predict the optimal maturation moment. So, the new proposed
approach could be considered as alternative to the traditional methods, proving
not only the validation of the presented technique as another option to the con-
ventional processes, but the appropriate use of potential fields as external forces
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Fig. 4.5. [Initial (a) and final (b) snake for the Biceps Femoris muscle, and initial (c) and final (d)
snake for the Quadriceps muscle.

in Deformable Models, as well as the practical efficiency of the algorithmic im-
provements.

4.4. Conclusions

Using potential fields as external forces is a suitable solution for Deformable Mod-
els. It is allowed to initialise snakes far from the searched border, combining this
new external force with algorithmic improvements. The redistribution of the snake
points during the snake deformation stage, the elimination of groups of isolated
pixels in the pre-processing stage and the utilisation of scaled versions of the final
snakes used as initial snakes for consecutive images suppose important and valid
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Fig. 4.6. Biceps Femoris (a) and Quadriceps (b) muscle size evolution during the ripening time.

algorithmic improvements. These significant enhances allow snakes evolve into
concave boundary too. The practical feasibility of applying Computer Vision tech-
niques, in conjunction with MRI, to automatically determine the optimal ripening
time for the Iberian ham, is another conclusion obtained from this work. There-
fore, great perspectives for the pork industry are offered by this new approach, to
improve the efficiency in the ripening process in the future.
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Automatic handwritten text recognition by computer has a number of interesting
applications. However, due to a great variety of individual writing styles, the
problem is very difficult and far from being solved. Recently, a number of clas-
sifier creation methods, known as ensemble methods, have been proposed in the
field of machine learning. They have shown improved recognition performance
over single classifiers. For the combination of these classifiers many methods
have been proposed in the literature. In this paper we describe a weighted voting
scheme where the weights are obtained by a genetic algorithm.

5.1. Introduction

The field of off-line handwriting recognition has been a topic of intensive research
for many years. First only the recognition of isolated handwritten characters was
investigated,' but later whole words> were addressed. Most of the systems re-
ported in the literature until today only consider constrained recognition prob-
lems based on small vocabularies from specific domains, e.g. the recognition of
handwritten check amounts® or postal addresses.* Free handwriting recognition,
without domain specific constraints and large vocabularies, was addressed only
recently in a few papers.>® The recognition rate of such systems is still low, and
there is a need to improve it.

The combination of multiple classifiers has become a very active area of re-
search recently.”8 It has been demonstrated in a number of applications that using
more than a single classifier in a recognition task can lead to a significant im-
provement of the system’s overall performance. Hence multiple classifier systems
seem to be a promising approach to improve the recognition rate of current hand-
writing recognition systems. Concrete examples of multiple classifier systems in
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handwriting recognition include.”'¢

To build a multiple classifier system, one needs a number of basic classifiers
first. Very often, the design of these basic classifiers is guided by intuition and
heuristics. Sometimes, different sources of information, which are redundant or
partly redundant to each other, are exploited, for example, zip code and city name
in address reading,* or legal and courtesy amount in bankcheck processing.? Re-
cently, a number of procedures for classifier generation, called ensemble creation
methods, were proposed in the field of machine learning. A summary of these
methods is given in.!” They are characterized by the fact that they produce several
classifiers out of one given base classifier automatically. Given a base classifier, an
ensemble of different classifiers can be generated by changing the training set,'®
the input features,'® the input data by injecting randomness?’ or the parameters
and architecture of the base classifier.?!

In a multiple classifier system for handwriting recognition, each of the basic
classifiers first generates, as its output, one or several hypotheses about the identity
of the unknown word to be recognized. Next, these outputs need to be appropri-
ately combined to derive the final recognition result. There are many ways to
combine the results of a set of classifiers, depending on the type of the classifiers’
output.?>?* If the output is only the best ranked class then majority voting can
be applied. More sophisticated voting schemes also look at the probability of the
classification error for a specific class (Bayesian Combination Rule?*), or depen-
dencies between the classifiers (Behavior-Knowledge Space®). Some classifiers
have a ranked list of classes as output. In this case often Borda count®® or related
methods are used. In the most general situation, a classifier generates a score value
for each class. Then the sum, product, maximum, minimum, or the median of the
scores of all classifiers can be calculated and the class with the highest value is
regarded as the combined result.>* It is also possible to first weight each classifier
according to its individual performance and then apply a combination rule.?’

Automatic classifier ensemble generation methods together with related com-
bination schemes have rarely been applied in the field of cursive handwriting
recognition until now. In this paper we propose a framework where the individ-
ual base classifiers are given by hidden Markov Models (HMMs).?® This kind of
classifier has shown superior performance over other approaches in many hand-
writing recognition tasks. The proposed multiple classifier system is distinguished
from many other classifiers described in the literature in that it has to deal with a
large number of classes. (In the experiments described in Section 5.6 a recognition
problem with over 2000 words, i.e. pattern classes, was considered.) This restricts
the number of possible classifier combination schemes. For example, considering
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class specific error rates in the combination method, as it was proposed in,?? is no
longer feasible because of its low reliability in case of a high number of classes.
Further constraints on possible combination schemes are imposed by the use of
HMMs as base classifiers. In our framework, only the class on the first rank to-
gether with its score is returned by each individual HMM classifier. Therefore,
Borda count, as well as sum, product, and median rule can’t be applied. Yet
weighted voting is feasible for this problem. It is, in fact, the most general form
of classifier combination available in the proposed framework.

In weighted voting, each classifier has a single vote for its top ranked class,
and this vote is given a weight. To derive the final decision in a multiple classifier
system using weighted voting, the weights assigned to each class by the different
classifiers are summed up and the class with the highest score is selected as the fi-
nal result. Under a weighted voting scheme, the weights assigned to the individual
classifiers are free parameters. Sometimes these weights are chosen proportional
to the recognition performance of individual classifiers. In this paper, we apply
a more general approach where the weights are considered as parameters which
are to be selected in such a way that the overall performance of the combined sys-
tem is optimized. A genetic algorithm is used to actually determine an optimal
(or suboptimal) combination of weight values. Also in?’ a genetic algorithm was
used for weight optimization in a multiple classifier system. However, an easier
recognition problem was considered there, i.e. the application was the recognition
of handwritten digits and the combined classifiers were not created by an ensem-
ble creation method, but were each separately designed by hand. In*® a genetic
algorithm was used for the selection of a subset of classifiers from an ensem-
ble, which is equivalent to weight optimization using only the weights 0 and 1.
Another application of a genetic algorithm in a multiple classifier framework has
been proposed in.'® In this work, a genetic algorithm was used to select individual
classifiers from a pool for the different modules of a multiple classifier framework.

The remainder of this paper is organized as follows. In Section 5.2 our base
classifier, which is a handwritten word recognizer based on hidden Markov Mod-
els (HMMs), is introduced. The following section describes the methods used
to produce classifier ensembles from the base classifier. Then the classifier com-
bination schemes used in this work are introduced in Section 5.4. The genetic
algorithm for the calculation of the weights applied in the weighted voting com-
bination scheme is described in Section 5.5. In Section 5.6 experimental results
comparing genetic weight optimization with other combination schemes are pre-
sented. Finally the last section draws conclusions from this work.
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Fig. 5.1. System overview.

5.2. Handwritten word recognizer

The basic handwritten text recognizer used in the experiments of this paper is
similar to the one described in.® It follows the classical architecture and consists
of three main modules (see Fig. 5.1): the preprocessing, where noise reduction
and normalization take place, the feature extraction, where the image of a hand-
written text is transformed into a sequence of numerical feature vectors, and the
recognizer, which converts these sequences of feature vectors into a word class.
The first step in the processing chain, the preprocessing, is mainly concerned
with text image normalization. The goal of the different normalization steps is to
produce a uniform image of the writing with less variations of the same character
or word across different writers. The aim of feature extraction is to derive a se-
quence of feature vectors which describe the writing in such a way that different
characters and words can be distinguished, but avoiding redundant information as
much as possible. In the presented system the features are based on geometrical
measurements. At the core of the recognition procedure is an HMM. It receives
a sequence of feature vectors as input and outputs a word class. In the following
these modules are described in greater detail. In the Appendix a small subset of
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Fig. 5.2. Preprocessing of the images. From left to right: original, skew corrected, slant corrected
and positioned. The two horizontal lines in the right most picture are the two baselines.

the words used in the experiments described in Section 5.6 are shown.

5.2.1. Preprocessing

Each person has a different writing style with its own characteristics. This fact
makes the recognition task complicated. To reduce variations in the handwritten
texts as much as possible, a number of preprocessing operations are applied. The
input for these preprocessing operations are images of words extracted from the
database described in.3!3? In the presented system the following preprocessing
steps are carried out:

e Skew Correction: The word is horizontally aligned, i.e. rotated, such that the
baseline is parallel to the z-axis of the image.

e Slant Correction: Applying a shear transformation, the writing’s slant is trans-
formed into an upright position.

e Line Positioning: The word ’s total extent in vertical direction is normalized to
a standard value. Moreover, applying a vertical scaling operation the location
of the upper and lower baseline are adjusted to a standard position.

An example of these normalization operations is shown in Fig. 5.2. For any
further technical details see.®

5.2.2. Feature extraction

To extract a sequence of feature vectors from a word, a sliding window is used.
The width of the window used in the current system is one pixel and its height
is equal to the word’s height. The window is moved from left to right over each
word. (Thus there is no overlap between two consecutive window positions.) Nine
geometrical quantities are computed and used as features at each window position.
A graphical representation of this sliding window technique is shown in Fig. 5.3.

The first three features are the weight of the window (i.e. the number of black
pixels), its center of gravity, and the second order moment of the window. This set
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Fig. 5.3. Tllustration of the sliding window technique. A window is moved from left to right and
features are calculated for each position of the window. (For graphical representation purposes, the
window depicted here is wider than one pixel.)

characterizes the window from the global point of view. It includes information
about how many pixels in which region of the window are, and how they are
distributed. The other features represent additional information about the writing.
Features four and five define the position of the upper and the lower contour in
the window. The next two features, number six and seven, give the orientation
of the upper and the lower contour in the window by the gradient of the contour
at the window’s position. As feature number eight the number of black-white
transitions in vertical direction is used. Finally, feature number nine gives the
number of black pixels between the upper and lower contour. Notice that all these
features can be easily computed from the binary image of a text line. However, to
make the features robust against different writing styles, careful preprocessing, as
described in Subsection 5.2.1, is necessary.

To summarize, the output of the feature extraction phase is a sequence of 9-
dimensional feature vectors. For each word to be recognized there exists one
such vector per pixel along the x-axis, i.e. along the horizontal extension of the
considered word.

5.2.3. Hidden Markov models

Hidden Markov models (HMMs) are widely used in the field of pattern recog-
nition. Their original application was in speech recognition.*® But because of
the similarities between speech and cursive handwriting recognition, HMMs have
become very popular in handwriting recognition as well.>*

When using HMMs for a classification problem, an individual HMM is con-
structed for each pattern class. For each observation sequence, i.e. for each se-
quence of feature vectors, the likelihood that this sequence was produced by an
HMM of a class can be calculated. The class whose HMM achieved the highest
likelihood is considered as the class that produced the actual sequence of observa-
tions.

An HMM consists of a set of states and transitions probabilities between those
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Fig. 5.4. HMM for a single character with linear transition structure.

states. One or several of the states are defined as final states. For each state a like-
lihood value for each possible observation is defined. If there is a finite number
of observations then a probability for each observation, i.e. feature vector, is de-
fined, but if we have continuous observation vectors a probability distribution is
used. A valid sequence of states for a observation sequence 0geq = 01,02, ...,0,
iS Sgeq = S1,52,...,5, Where s, is a final state. Note that the number of states
in s,¢4 is the same as the number of observations in 0,4.4. The likelihood of the
sequence of states s,., is the product of the likelihoods of observing o; in state
s; for all observations, multiplied by the probabilities of the transitions from state
s; to s;41 foralli € {1,...,n — 1}. There are two possibilities to define the
likelihood of an observation sequence 0., for a given HMM. Either the highest
likelihood of all possible state sequences is used (Viterbi recognition), or the sum
of the likelihoods of all possible state sequences is considered as the likelihood of
the observation sequence (Baum-Welch recognition). In the system described in
this paper the first possibility is used. For details see,* for example.

In word recognition systems with a small vocabulary, it is possible to build an
individual HMM for each word. But for large vocabularies this method doesn’t
work anymore because of the lack of enough training data. Therefore, in our
system an HMM is build for each character. The use of character models allows
us to share training data. Each instance of a letter in the training set has an impact
on the training and leads to a better parameter estimation.

To achieve high recognition rates, the character HMMs have to be fitted to
the problem. In particular the number of states, the possible transitions and the
type of the output probability distributions have to be chosen. In our system each
character model consists of 14 states. This number has been found empirically.
(The rather high number can be explained by the fact that the sliding window
used for feature extraction is only one pixel wide and that many different writing
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Fig. 5.5. Concatenation of character models yields the word models.

styles are present in the used database.) Because of the left to right direction
of writing, a linear transition structure has been chosen for the character models.
From each state only the same or the succeeding state can be reached. (A graphical
representation of the HMMs used in our system is shown in Fig. 5.4.) Because
of the continuous nature of the features, probability distributions for the features
are used. Each feature has its own probability distribution and the likelihood of
an observation in a state is the multiplication of the likelihoods calculated for
all features. This separation of the elements of the feature vector reduces the
number of free parameters, because no covariance terms must be calculated. The
probability distribution of all states and features are assumed to be Gaussians, so
that only two free parameters per distribution exist, namely, the mean and the
variance. The initialization of the models is done by Viterbi alignment to segment
the training observations and recompute the free parameters of the models, i.e. the
mean and variance of each probability distribution and the transition probabilities
between the states. To adjust these free parameters during training, the Baum-
Welch algorithm?? is used.

To model entire words, the character models are concatenated with each other.
Thus a recognition network is obtained (see Fig. 5.5). Note that this network
doesn’t include any contextual knowledge on the character level, i.e., the model
of a character is independent of its left and right neighbor. In the network the best
path is found with the Viterbi algorithm.?* It corresponds to the desired recogni-
tion result, i.e., the best path represents the sequence of characters with maximum
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probability, given the image of the input word. The architecture shown in Fig. 5.5
makes it possible to avoid the difficult task of segmenting a word into individual
characters. More details of the handwritten text recognizer can be found in.

5.3. Ensemble creation methods

In this section the ensemble creation methods used in this paper are described.
Each ensemble creation method takes a base classifier and a training set as input
and returns a number of trained instances of the base classifier as a result. In the
first subsection general aspects of ensemble creation are discussed. Then details
of the various methods are given.

5.3.1. Issues in ensemble creation

A good performing ensemble creation method should have at least two properties.
First, the method should create diverse classifiers, which means that the misclas-
sification of patterns should have a low correlation across different classifiers (or
in other words, the recognition rate of a classifier C; on the patterns misclassified
by another classifier C; should be close to the average recognition rate of Cj). In
the ideal case independent classifiers are created, but this is almost impossible in
real world applications. The diversity of classifiers is crucial, because all of the
known combination rules can only increase the performance of single classifiers
if they are used with an ensemble of diverse classifiers. It is well known that a
high correlation between the errors committed by individual classifiers may lead
to a decreasing performance of the ensemble when compared to the best individ-
ual classifier. For a more detailed discussion of classifier diversity the reader is
referred to.

The second requirement is that an ensemble creation method should produce
individual classifiers whose recognition rate is not much lower than that of the
trained base classifier. It is obvious that the recognition rate of an ensemble using
a combination rule depends on the performance of its individual members. There
are some ensemble creation methods that have the potential of creating classifiers
which outperform the best base classifier. But if many members of an ensemble
have a poor performance they may eventually become dominant over the well-
performing classifiers. To avoid performance degradation an ensemble creation
method should particularly avoid to overfit the training data.

In the following, four ensemble creation methods, namely, Bagging, Ad-
aBoost, random subspace, and architecture variation are introduced. These meth-
ods were originally proposed in the area of machine learning. Note that their
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quality with regard to the two properties discussed above is application dependent
and can’t be guaranteed a priori.

5.3.2. Bagging

Bagging,'® an acronym for bootstrapping and aggregating, was among the first
methods proposed for ensemble creation. Given a training set S of size n, bagging
generates /N new training sets Si, ..., Sn, each of size n, by randomly drawing
elements of the original training set, where the same element may be drawn mul-
tiple times. If the probability of being drawn is equally distributed over .S, as it
is the case here, about two third of all training elements are contained in each
modified training set S;, some of them multiple times. Each of the new sets .S; is
used to train exactly one classifier. Hence an ensemble of NV individual classifiers
is obtained from N new training sets.

5.3.3. AdaBoost

Similarly to Bagging, AdaBoost*® modifies the original training set for the cre-
ation of the ensemble. To each pattern of the training set a selection probability is
assigned, which is equal for all elements of the training set in the beginning. Then
elements for a new training set are randomly drawn from the original training set
taking the selection probabilities into account. The size of the new training set
is equal to the size of the original one. After the creation of a new training set,
a classifier is trained on this set. Then the new classifier is tested on the origi-
nal training set. The selection probabilities of correctly classified patterns in the
original training set are decreased and the selection probabilities of misclassified
patterns are increased. During the execution of the AdaBoost procedure the se-
lection probabilities are dynamically changing. Hence, unlike Bagging, where the
classifiers are created independently, the classifiers generated by AdaBoost are
dependent on selection probabilities, which in turn depend on the performance of
previously generated classifiers.

The main idea of AdaBoost is to concentrate the training on “difficult” pat-
terns. Note that the first classifier is trained in the same way as the classifiers in
Bagging. The classical AdaBoost algorithm can only be used for two-class prob-
lems, but AdaBoost.M1,3¢ a simple extension of AdaBoost, can cope with multi-
class problems. Consequently, AdaBoost.M1 was applied in the system described
in this paper.



GA for Optimization of Weights in a MCS handwriting Recognition System 97

5.3.4. Random subspace method

In the random subspace method'® an individual classifier uses only a subset of all
features for training and testing. The size of the subset is fixed and the features
are randomly chosen from the set of all features.

For the handwritten text recognizer described in Section 5.2 the situation is
special in the sense that the number of available features is rather low. (As de-
scribed in Section 5.2, only nine features are extracted at each position of the win-
dow.) Therefore, the features are not completely randomly chosen. If the number
of classifiers which use feature f; is denoted by n(f;), then the following relation
holds: ¥i,j |n(f;) — n(f;)] <= 1. This means that each individual feature is
used in approximately the same number of classifiers. Therefore, all features have
approximately the same importance. By means of this condition it is enforced that
the information of every feature is exploited as much as possible. By contrast,
when choosing completely random feature sets, it is possible that certain features
are not used at all.

In the experiments described in Section 5.6, always subsets of six features
were used. This number was experimentally determined as a suitable value. The
whole training set with feature vectors of reduced dimensionality was used for the
training of each individual classifier.

5.3.5. Architecture variation

Another way to create an ensemble out of a base classifier is to vary its architec-
ture. In a feed-forward neural network, for example, one may change the number
of hidden layers or the number of neurons in each layer.?! Similar possibilities
exist for HMM. Our base classifier was changed as follows.

First, the linear topology was replaced by the Bakis model (see Fig. 5.6). This
topology allows more flexibility in the decoding process by skipping certain states.
Next, two additional architectures were implemented. The HMM models used in
our base classifier don’t include any ligature states®. But the transition from one
character to the next is often context dependent. Therefore, if certain character
pairs are not sufficiently well represented in the training set, misalignments at the
beginning and at the end of a character model during decoding may be expected.
To account for this kind of problem, the semi-jumpin and semi-jumpout archi-
tecture shown in Fig. 5.6 were introduced. Here the first or last % states of a
linear model may be skipped (with n denoting the total number of states of the
considered HMM).

4Here the term ligature denotes a connection stroke between two consecutive characters
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Fig. 5.6. HMM topologies (for a small HMM with 6 emitting states. Note that the HMMs of the
classifier in Section 5.2 have 14 emitting states.)

Normally the columns of a word image are read form left to right. Another
possibility is to read them from right to left. Because the Viterbi search used in the
decoding phase is a suboptimal procedure that prunes large portions of the search
space, the results of a forward and a backward scan of the word are not necessarily
the same. To implement a right-to-left scan of the image, only the concatenation
of character HMMs needs to be changed appropriately.

Apparently, left-to-right as well as right-to-left scanning can be combined with
any of the architectures shown in Fig. 5.6. Therefore, a total of eight different
classifiers were generated. Each of these classifiers was trained on the full training
set.

5.4. Combination schemes

In this section the combination schemes used in our multiple classifier system for
handwriting recognition are described.
5.4.1. Maximum score rule

In this scheme the word class with the highest score among all word classes and
all classifiers is the output of the combined classifier. This combination scheme is
denoted as max in the following.

5.4.2. Performance weighted voting

In the weighted voting combination scheme a weight is assigned to each classifier.
For all word classes the sum of the weights of the classifiers which output this
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class is calculated and the combined result is the word class that has the largest
sum of weights. In the performance weighted voting scheme, which is denoted as
perf voting in the following, the weight of the classifier is equal to the classifier’s
performance (i.e. recognition rate) on the training set. The system described in
Section 5.2 was found to have a good generalization power, i.e. the results on the
training set allow a good estimation of the behavior of the system on test data. So
the training set was used for the evaluation of the performance of the classifiers.
For other classifiers it may be necessary to use a separate validation set to evaluate
the performance of the created classifiers. (The Nearest-Neighbor classifier, for
example, has always a recognition rate of 100 % on its training set.)

5.4.3. Weighted voting using weights calculated by a genetic algorithm

Using the performance of a classifier as its weight is based on the intuitive as-
sumption that classifiers with a high recognition rate are more trustworthy than
classifiers that perform poorly. However, there is no objective proof that this strat-
egy is optimal. Under a more general approach, one considers the set of weights
as free parameters in a multiple classifier system, and tries to find the combination
of values that lead to the best performance of the whole system. Out of many
possible optimization procedures it was decided to use a genetic algorithm?’ for
weight optimization. Among the reasons to favor a genetic approach over other
methods was the simplicity and elegance of genetic algorithms as well as their
demonstrated performance in many other complex optimization problems.34

The training set used to find the individual classifiers was also used to derive
the optimal combination of weights, assuming that the obtained values lead to
a good performance on the test set as well. The genetic algorithm for weight
optimization will be described in Section 5.5 in greater detail. In the following
this algorithm will be denoted as ga voting.

5.4.4. Voting with ties handling

Under this scheme a normal voting procedure is executed first, i.e., if the occur-
rence of a class among the results of the classifiers is higher than the occurrence of
any other class then this class is output as the combined result. A tie occurs if no
unique result is obtained. For some applications it may be sufficient to just reject
a pattern if a tie occurs, but here we use a more general approach. In case of a tie
we focus our attention on those classes that compete under the tie and apply one
the above mentioned combination schemes. So there is voting with tie handling
by maximum score rule, by performance weighted voting, and by weighted voting
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using weights calculated by a genetic algorithm. Theses schemes are denoted as
ties max, ties perf voting, and ties ga voting, respectively.

5.5. Genetic algorithm for the calculation of the weights used by
weighted voting

First proposed in,?” genetic algorithms have been found to be robust and practical
optimization methods. In a genetic algorithm a possible solution of the problem
under consideration is represented by a chromosome. In the initialization step of
the algorithm a set of chromosomes is created randomly. The actual set of chro-
mosomes is called the population. A fitness function is defined to represent the
quality of the solution given by a chromosome. Only the chromosomes with the
highest values of this fitness function are allowed to reproduce. In the reproduc-
tion phase new chromosomes are created by fusing information of two existing
chromosome (crossover) and by randomly changing them (mutation). Finally the
chromosomes with the lowest values of the fitness function are removed. This
reproduction and elimination step is repeated until a predefined termination con-
dition is become true. In the following we describe the genetic algorithm that is
used in our multiple classifier system in more details.

5.5.1. Chromosome representation and fitness

The representation of a set of weights for the individual classifiers by a chro-
mosome is straightforward. Each chromosome is represented by an array of real
numbers between 0 and 1. The i-th position of the array corresponds to the weight
of the ¢-th classifier of the ensemble. The number of elements in the array is equal
to the number of classifiers. The fitness of a chromosome is defined as the recogni-
tion rate of the ensemble when using weighted voting with the weights represented
by the chromosome. Note that by using the performance of the whole ensemble
as fitness the diversity of the individual classifiers is also taken into account.

5.5.2. Initialization and termination

A population of size 50 was used in the algorithm. All positions of the chro-
mosomes are set to random real values between 0 and 1 at the beginning of the
algorithm. If the fitness value of the ten best chromosomes is the same the al-
gorithm is terminated. Alternatively, if this condition doesn’t become true, the
algorithm is terminated after 100 generations. The weights of the chromosome
with the highest fitness value encountered during all generations (not only the last
one) are the final result and are used for the weighted voting combination.
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5.5.3. Crossover operator

A normal one point crossover operator is used. First a position 7 in the chromo-
some is randomly selected. Then the values the first parent chromosome from
position 1 to position 7 are copied to the corresponding positions in the first child
chromosome. Moreover, the values of the remaining positions of the first parent
chromosome are copied to the corresponding positions of the second child chro-
mosome. Then the positions of the children chromosomes not yet defined are set
to the corresponding values of the second parent chromosome. The probability of
the crossover was set to 90 %.

5.5.4. Mutation operator

The mutation operator is applied to all new chromosomes produced by the
crossover operator. This operator changes only one random position of the ar-
ray in the following manner. The value at this position is changed by a constant
multiplied with a random number between O and 1. Under this procedure, the
chance of an increase or a decrease is both equal to 50%. If the value after this
modification is higher than 1 or lower than 0 it is set to 1 and 0, respectively. In
the experiments the constant was set to 0.2.

5.5.5. Generation of a new population

First 25 chromosomes are produced by the crossover operator. Each of the 50
chromosomes of the old generation may be selected as a parent of a new chro-
mosome. The selection probability of a chromosome is proportional to its fitness
value minus the minimal fitness value of the old generation (i.e. the chromosome
with the lowest fitness in the old population has a selection probability equal to
0). The mutation operator is applied to all new 25 chromosomes. Then the 50 old
and the 25 new chromosomes are combined into one population. To reduce this
population to the original size, the 25 chromosomes with the smallest score values
are removed. Note that also newly created chromosomes may be removed.

5.6. Experiments

All ensemble creation methods discussed in Section 5.3 were implemented and
tested on a part of the IAM database. This database is publicly available® and has
been used by several research groups meanwhile.?! The original version of the

Yhttp://www.iam.unibe.ch/~ zimmerma/iamdb/iamdb.htm]
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database contains complete lines of text as its basic entities, without any segmen-
tation of a line of text into individual words.’! Meanwhile, however, part of this
database has been segmented into individual words.>"3> A subset of these words
was used in the experiments described in this section.

The training set used in the experiments contains 9861 and the test set 1066
word instances over a vocabulary of size 2296. The test set was chosen in such a
way that none of its writers was represented in the training set. Hence all experi-
ments described in this paper are writer independent. The total number of writers
who contributed to the training and test set is 81. A small sample of words from
this database is shown in the Appendix.

Table 5.1 shows the results of the experiments. The recognition rate of the
classifier with the original architecture and training set was 66.23 %. Bagging,
AdaBoost and random subspace method each created 10 classifiers while the ar-
chitecture variation method generated only 8 (see Subsection 5.3.5).

Table 5.1.  Recognition rates achieved by the ensemble creation methods under different combination
rules. The best result for each ensemble creation method is printed in bold face.

ensemble creation method

combination Bagging | AdaBoost | random subspace | architecture var.
max 65.2 % 63.51 % 62.10 % 4597 %
perf voting 67.64 % 68.86 % 68.11 % 68.39 %
ga voting 67.92 % 68.29 % 68.67 % 68.76 %
ties max 67.35 % 68.29 % 67.54 % 66.98 %
ties perf voting 67.64 % 68.86 % 68.11 % 68.57 %
ties ga voting 67.82 % 68.39 % 68.01 % 68.57 %

[ original ] 66.23 % |

At first glance, the recognition performance of all systems under considera-
tion may appear quite low. One has to keep in mind, however, that a very diffi-
cult classification problem is considered. First of all, we are faced with a pattern
recognition task that involves 2296 pattern classes. Secondly, there were almost
no constraints imposed on the writers. Hence all kinds of different writing styles
and writing instruments are represented in the data set. Thirdly, a large number
of writers contributed to the database, and all experiments were run in a writer-
independent fashion, i.e. the writers of the training and validation set are disjoint
from the writers of the test set.

In the following the results of the different combination schemes are discussed.
Obviously the max combination performed rather poorly. A possible explanation
of this poor performance is the different ranges of score values returned by the
classifiers. Because the score is only a likelihood value, it depends on the specific
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HMM, and identical score values from different HMMSs don’t necessarily imply
that the word classes which correspond to these values have the same probability
of being correct. Note that the performance of the maximum combination rule
is especially poor for architecture var and random subspace, where the HMMs
of the classifiers are very different. A possibility to overcome this problem is to
normalize the score values for each classifier. However, this possibility has not
been explored in the context of this paper and is left to future research.

All other combination schemes lead to an increase of the recognition rate for
all ensemble creation methods when compared to the original classifier. The pro-
posed ga voting combination was the best scheme for three out of the four en-
semble creation methods considered in the tests. The quality of the other schemes
relative to each other varied among the tests.

Please note that with the simple weighting mechanism of perfvoting also good
results were achieved. The superior performance of ga voting over perf voting
doesn’t hold true any longer for voting with tie handling. Here fies ga voting is
outperformed by ties perf voting for two ensemble creation methods. The rea-
son for this behavior is that the weights calculated by the genetic algorithm are
optimized for weighted voting and not for voting with ties handling by weighted
voting. Nevertheless fies ga voting is clearly superior to the original classifier.

To compare the different ensemble methods in more detail the average perfor-
mance and the standard deviation of the performances of the individual classifiers
were calculated. Those values are shown in Table 5.2.

Table 5.2.  Average performance and the standard deviation of the performance of the individual clas-
sifiers. The performances of the original classifier is 66.23 %.

ensemble creation method
measure Bagging | AdaBoost | random subspace | architecture var.
average 66.02% | 65.82% 60.76 % 52.49 %
std. deviation 0.58 % 1.82 % 4.66 % 9.71 %

Bagging produced classifiers with very similar performances and which were
in average almost as good as the original classifier. As the performance of the
ensemble is not much higher than the performance of the original classifier in
respect to the other ensemble methods it may be concluded that the diversity of
the classifiers is low.

The classifiers produced by AdaBoost had a wider range of performance than
Bagging. Although the average performance of the individual classifier is slightly
lower than in Bagging, a much better ensemble performance was achieved. This
indicates that the classifiers are quite diverse. AdaBoost was the only ensemble
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method were ga voting did not produce the best result. A possible reason for this
is the following. In AdaBoost the performance of the ensemble on the training set
is optimized by focusing on “difficult” patterns. Such optimization on the training
set normally leads to classifiers which are much better on the training set than on
the test set. As the genetic algorithm works with the results of the training set,
it may overestimate the performance of some classifiers and produce suboptimal
weights. This problem may be overcome by using a separate validation set for
calculating the weights.

The average performance of the classifiers produced by random subspace was
much lower than the performance of AdaBoost, yet the ensemble performance
was still quite good. So the diversity of classifiers increased again. For random
subspace the best performance of ga voting in respect to the other combination
schemes was achieved (ga voring had a 0.56 % higher performance than the sec-
ond best scheme). An analysis of the calculated weights showed that the weights
of three out of the ten classifiers were so low that in fact those classifiers were
almost irrelevant for the combination. This means that ga voting was capable
to discover the classifiers which lower the ensemble performance and to exclude
them from the combination.

The classifiers produced by architecture var. had in average a very low perfor-
mance (20.26 % lower than the performance of the original classifier). Yet good
ensemble results were achieved by this method which leads to the conclusion that
the classifiers must be very diverse. For all ensemble methods but architecture
var. perfvoting and ties perf voting produced te same results.

When using ga voting or ties ga voting, in addition to the testing of all classi-
fiers on the training set also the genetic algorithm must be executed. Yet the time
consumption of the genetic algorithm is over 1000 times lower than that of the
tests on the training set so that this additional overhead is not significant.

5.7. Conclusions

In this paper the recognition of cursively handwritten words was considered. Be-
cause of the large number of classes involved and the great variations of words
from the same class, which is due to the considerable number of individual hand-
writing styles, this is regarded a difficult problem in pattern recognition. Multi-
ple classifier systems have demonstrated very good performance in many pattern
recognition problems recently. In this paper we have explored a number of clas-
sifier ensemble generation methods and related combination schemes. As hidden
Markov Models (HMMs) are considered to be one of the most powerful meth-
ods for cursive handwriting recognition today, we have focused on those classifier
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ensemble generation method and combination procedures that are applicable in
situations where the base classifiers of a multiple classifier system are given by
HMMs.

The combination schemes considered in this paper are based on the assump-
tion that each base classifier only outputs its top-ranked class, together with a
score value. Among other combination schemes, two versions of weighted voting
were considered. In the first version the weight of each individual base classifier
was set equal to its recognition rate on the test set. By contrast a genetic algorithm
was used for weight optimization in the second version, using the recognition per-
formance of the whole ensemble as fitness function. In a series of experiments
it was shown that for all but one combination scheme all multiple classifier sys-
tems could improve the performance of the original, single HMM-based classifier.
Among all combination schemes tested in the experiments, for three out of four
creation methods, the highest recognition rate was obtained with weighted voting
using genetic weight optimization.

The results reported in this paper confirm the suitability of genetic algorithms
to find optima or near optima of functions in complex situations. Future works
will address the problem of genetic weight optimization for systems including
significantly more classifiers. These classifiers may be generated from a single
base classifier using methods similar to those considered in the present paper.
Alternatively, it is possible to produce the base classifiers by the simultaneous
application of several classifier generation procedures. Topic of future work will
also be the use of a separate validation set for the calculation of the weights of the
classifiers to avoid overfitting problems.
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Appendix A. Handwritten Word Samples
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CHAPTER 6

DEMPSTER-SHAFER’S BASIC PROBABILITY ASSIGNMENT
BASED ON FUZZY MEMBERSHIP FUNCTIONS
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In this paper, an image segmentation method based on Dempster-Shafer evidence
theory is proposed. Basic probability assignment (bpa) is estimated in unsuper-
vised way using pixels fuzzy membership degrees derived from image histogram.
No assumption is made about the images data distribution. bpa is estimated at
pixel level. The effectiveness of the method is demonstrated on synthetic and real
images.

6.1. Introduction

Multisensor data fusion is an evolving technology that is analogous to the ongoing
cognitive process used by human to integrate data from their senses continually
and make inferences about the external world.! The information provided by one
sensor is usually limited and sometimes of low accuracy. The use of multiple
sensors is an alternative to improve accuracy and provide the user with additional
information of increased reliability about the environment in which the sensors
operates. Applications of data fusion range from medical imaging, scene analy-
sis, Robotics, non destructive evaluation, target tracking to airborne surveillance.
Data fusion can be done at different levels of representation: signal, pixel, feature
and symbolic levels. In this work we address the problem of pixel-level fusion.
Different strategies have been developed for data fusion. The frameworks used
for data management are Bayesian inference, Dempster-Shafer (DS) theory>? and

*Corresponding author.
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fuzzy logic inference. DS theory makes inferences from incomplete and uncertain
knowledge, provided by different independent knowledge sources. A first advan-
tage of DS theory is its ability to deal with ignorance and missing information.
In particular, it provides explicit estimation of imprecision and conflict between
information from different sources and can deal with any unions of hypotheses
(clusters).* This is particularly useful to represent “mixed” pixels in image seg-
mentation problems. The main limitation of Bayesian inference is that it cannot
model imprecision about uncertainty measurement. The degree of belief we have
on a union of clusters (without being able to discriminate between them) should
be shared by all the simples hypotheses, thus penalizing the good one. DS theory
handles uncertain and incomplete information through the definition of two dual
non additive measures: plausibility and belief. These measures are derived from
a density function, m, called basic probability assignment (bpa) or mass function.
This probability assigns evidence to a proposition (hypothesis). The derivation of
the bpa is the most crucial step since it represents the knowledge about the appli-
cation as well as the uncertainty incorporates in the selected information source.
pba definition remains a difficult problem to apply DS theory to practical applica-
tions such in image processing. For example, bpa may be derived, at pixel level,
from probabilities®” or from the distance to cluster centers.® In this work bpa is
estimated in unsupervised way and using fuzzy membership functions to take into
account the ambiguity within pixels. This ambiguity is due the possible multi-
valued levels of brightness in the image. This indeterminacy is due to inherent
vagueness rather than randomness. The number of the clusters of the image is
supposed known. In’ the bpa estimation is based on the assumption that the prob-
ability distribution of the gray level values (image histogram) is Gaussian model.
Our estimation approach does not make any assumption about the probability dis-
tribution of the gray level histogram and is not limited to only two sources.

6.2. Dempster-Shafer theory

In DS theory, there is a fixed set of ¢ mutually exclusive and exhaustive elements,
called the frame of discernment, which is symbolized by:

© ={Hy,H,,... H,}

The representation scheme, ©, defines the working space for the desired ap-
plication since it consists of all propositions for which the information sources
can provide evidence. Information sources can distribute mass values on subsets
of the frame of discernment, A; € 2 (6.1). An information source assign mass
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values only to those hypotheses, for which it has direct evidence.
0<m(A;) <1 6.1)

bpa has to fulfill the conditions: m(f)) = 0 and Z m(A4;) = 1. If an informa-

A; €209
tion source can not distinguish between two propositions, H; and H, it assigns a

mass value to their union (H; | H 7). Mass distribution from different information
sources, m;(j = 1,...,d), are combined with Dempster’s orthogonal rule (6.2).
The result is a new distribution, m(Ag) = (m1 ® ma & ... & my)(Ag), which
incorporates the joint information provided by the sources.

m(Ag) = (1 - K)™ x > ( 11 mj(Aj)) (6.2)

A1NAg.. . Ag=A, M1<j<d

K = > ( 11 mj(Aj)> (6.3)

A1NAz.. . Ag=0 “1<j<d

K is often interpreted as a measure of conflict between the different sources (6.3)
and is introduced as a normalization factor (6.2). The larger K is the more the
sources are conflicting and the less sense has their combination. The factor K indi-
cates the amount of evidential conflict. If K = 0, this shows complete compatibil-
ity, and if 0 < K < 1, it shows partial compatibility. Finally, the orthogonal sum
does not exist when K = 1. In this case, the sources are totally contradictory, and
it is no longer possible to combine them. In the cases of sources highly conflict-
ing, the normalisation used in the Dempster combination rule can be mistaking,
since it artificially increases the masses of the compromise hypotheses.” One may
suggest as in® that the conflict come from the “true” assumption has been for-
gotten (in the set of hypotheses). However, this cannot occur under closed-world
assumption, which is our case, and thus the high conflict level is rather due to the
fact that one of the sources is erroneous. In such case, conflict problems should
not occur provided that the source information modeling was correctly done, in
particular including, when necessary, an ignorance or error term (by affecting non
null masses to compound hypotheses and ©).!° Finally, we find a normalization
process is necessary to satisfy the relations m () = 0 and Z m(A;) =1 and

A; €29
to preserve the associative properties of the combination rule. From a mass dis-

tribution, numerical values can be calculated that characterize the uncertainty and
the support of certain hypotheses. Belief (6.4) measures the minimum or neces-
sary support whereas plausibility (6.5) reflects the maximum or potential support
for that hypothesis. These two measures, derived from mass values, are respec-
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tively defined from 2€ to [0, 1]:

Bel(A;) = Y m(A)) (6.4)
AjCA;

Pls(A;) = > m(A)) (6.5)
AjﬁAiyﬁ@

The equations (6.4) and (6.5) imply that Bel(.) and Pls(.) are dual measures
related by

Pls(A;) = 1 — Bel(-A;) (6.6)

6.3. Fuzzy approach

Modeling real problems typically involves processing uncertainty of three types.
Uncertainty of probabilistic nature, uncertainty due to the lack of specification
and fuzziness. Traditionally nonfuzzy uncertainties are handled by probabilistic
methods such as Bayesian networks and DS theory while fuzziness uncertainty
is modeled by fuzzy set theory. Fuzzy uncertainty deals with situations where
boundaries of the sets (clusters) under consideration are not sharply defined (par-
tial occurrence of an event). On the other hand, for nonfuzzy uncertainties there
is no ambiguity about set boundaries, but rather, about the belongingness of el-
ements or events to crisp sets. Real data are often imprecise and contain some
ambiguity caused by the way they have been obtained. Origins of this kind of
ambiguity may be inaccuracy of the used devices involving an error of measure-
ment of fuzzy nature. In image processing, images which are mappings of natural
scenes are always accompanied by an amount of fuzziness due to imprecision of
gray values and ambiguity created by the mapping mechanism. There are many
situations where we often face at the same time fuzzy and nonfuzzy uncertain-
ties. This suggests to combine DS and fuzzy sets frameworks. Thus, the goal
of this work is to estimate bpas using fuzzy membership functions which capture
vagueness.

Let X = {x1,22,..., 20N} be an image set of size M x N with L levels,
g=20,1,2,...,L — 1, and x,,, is the gray level of a (m, n)th pixel in X. Let
w(X) = {p(x1), p(x2), ..., u(xrrn)} be the corresponding fuzzy membership
degrees derived from X. p(.) is obtained by operating a fuzzifier on X. This
fuzzifier performs a mapping from crisp data values (X)) into a fuzzy set repre-
sented by p(X). We denote by p;(z,n) the fuzzy membership degree of pixel
Typ to fuzzy subset (cluster) ¢ of X. In this work, Fuzzy C-means (FCM) al-
gorithm!! is used as fuzzifier. FCM has an advantage of clustering data without
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the need for a statistical model of the data. For image fuzzification we use an
histogram based gray-level fuzzification.'” Thus, we use gray level g instead of
the intensity of (m,n)th pixel x,,, (Figure 1). The FCM only operates on the
histogram and consequently is faster than the conventional version,'! which pro-
cesses the whole data set X

6.4. Basic probability assignment

In image segmentation problem, © is the set of all the clusters of the image, |©] =
C is the number of clusters and 2¢ contains all the possible unions of clusters.
The hypotheses considered in DS formulation are: () (whose mass is null), simple
hypothesis H; and compound hypotheses H; | J ... H;. For the choice of the bpa
of Hy, and H;, the following strategy is used :

(1) Affecting a non null mass to Hy, | J H; if Hy, and H; are not discriminated on
the image (not distinguishable by the sensor) (Figure 1). There is an ambiguity
between Hj, and H;. In this case affecting a pixel with gray level g to cluster
k or [ using of fuzzy membership rule is not valuable (1 (g) = 1 (g)).

(2) Affecting a null mass to Hy, |J H; if Hy, and H; are discriminated on the im-
age. There is no or less ignorance about clusters & and (.

In performing a fuzzy clustering on image histogram'? the intersection be-
tween two fuzzy membership degree curves 1 (g) and 1;(g) to two consecutive
centroids Vj, and V; (Figure 1), occurs in one and only one point. This point corre-
sponds to a high degree of ambiguity and then to maximum value of m(Hy | J Hy).
For example, at pixel with gray level g = 139 information source can not distin-
guish between between clusters Hy and Hs, m(Hz |J H3)(g = 139) # 0, while
at pixel with gray level ¢ = 50 there is no ambiguity to affect g = 50 to cluster
Hj and thus m(Hz | J H3)(g = 50) = 0, (Figure 1). The bpa are normalized such
that Z m(H;) = 1. Using image histogram, for each level g, and according

H;e2¢
the C Vilues, different cases are distinguished. For more convenience, we use the
following notations:

B = @%(m(g)) (6.7)
a=p- 1rgrﬁignc(m(g)) (6.8)

[=1{1,....C}
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Fuzzy membership degrees

0 50 100 150 200 250

Gray Levels

Fig. 6.1. Plot of fuzzy membership functions generated by FCM algorithm (RX image). V; stands
for the centroid of the i*/ cluster.

where

c
> milg) =1
i=1

I is the set of cluster indices and its cardinal is the number of clusters, C.
arg(p) = arg(lgl_ag(c 1i(g)) is the maximum fuzzy membership defuzzification
_/L_

rule. The pixel with gray level g is affected to cluster arg(5).

In the proposed fusion scheme for all C' values, both simples and compound
hypotheses are taken into account. In the framework of histogram based segmen-
tation and for C' < 3, ambiguity can not occur between all the C' classes. Thus, a
null mass is affected to the union of hypotheses (Eqgs. (6.12),(6.16),(6.22),(6.25)).
For C' = 2, in general there is at least one pixel where the two classes (hypothe-
ses) are not sufficiently distinguishable form each other so that a new compound
hypotheses is created with a non null mass (Eq. (6.9)). However, if the two hy-
potheses are well distinguishable from each other, the mass value of their union is
null (Eq. (6.20)). For all C values, and for all cases (with less or high ambiguity),
the mass value affected to single hypothesis proportional to the corresponding
fuzzy membership degree (Eqgs. (6.10),(6.13),(6.17),(6.18),(6.19),(6.23),(6.26)).
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The mass value affected to compound hypotheses is proportional to the sum of
their fuzzy membership degrees (Egs. (6.11),(6.14),(6.15),(6.21),(6.24)). In each
case, the normalization condition must be verified.

e If there is high ambiguity to affect a pixel with gray level g to cluster & or I:
| 1 (g) — mu(g) |< € then

(1) ForC =2
C
m(|J Hi)(g) = o 6.9)
l;bl(Hz‘)(g) =[—alxu(g)iel (6.10)
(2) ForC =3

m(Hy U Hi)(g)=a x [pk(9)+u(g)] (kD € I (6.11)
C
m(U H)(g) =0 (6.12)

m(H;)(g) = [1 — m(H U H;)(g)]xpi(g)  (6.13)
where 1, (k, l)k;ﬁl el

(3) ForC >3
m(Hy U H)(g) = a X [pi(g) + m(g)] (k, Dwa € 1 (6.14)
C C

m( | Hlg)=ax > pulg (6.15)

ikl ikl

C
m(|J Hi)(g) =0 (6.16)
m(Hy)(g) = [1—m( UH m(HUH)(g)]

z;ék,z;él

X fe(g) (6.17)

where ¢, (k, l)k;,gl el

o If there is less or no ambiguity to affect a pixel with gray level g to cluster k:
| i (g) — u(g) |> € then
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(1) ForC =2

m(H;)(g) = wi(g) x (p(9) — (9)) (k, D21 € I (6.18)
—u(g) X (px(g)—ulg)) (k, Dz € 1 (6.19)

3
=
=
~—
=
)
S~—

[

—

m(CJ Hi)(g) =0 (6.20)

(2) For C = ?::1
m(Hy, U Hi)(g)=ax[uk(g) + m(g)] (k, Drx € 1 (6.21)
m( Lch Hi)(g) =0 (6.22)

m(H;)(g) = [1 —m(Hy U Hp)(g)] x ni(g) (6.23)
where 7, (k’, l)k7gl el

(3) ForC >3

C C

m(|J Hi)(9) = milg) x (8- pilg)) (6.24)
iZh iZh
C

m(|J Hi)(g) =0 (6.25)
=1 .
m(H)(g) = (1= m(|J Hi)(9)) x pu(g)t €T (6.26)

iz

¢ is a threshold value. We make assumption that the images are well registered.
Since, images are clustered separately then a spatial correspondence between the
labels of clusters of different images is necessary so that pixels representing the
same physical object of the scene may be superimposed and thus to be able to
correctly combine the different information sources (6.2). The label-to-label map-
ping strategy is described in.'*> The use of image histogram loose spatial informa-
tion about pixels arrangement and the spatial correlation between adjacent pixels.
Furthermore, the membership resulted from the FCM algorithm are considerably
troublesome in a very noisy environment. To reduce noise effect and to improve
the classification results contextual processing is performed. Thus, before bpas
estimation, membership value of each pixel is updated by using its neighborhood
contextual membership values. In this work, a 3 x 3 neighborhood mean and
median filters are used.!?
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6.5. Results

The proposed data fusion method is first tested on synthetic images. Two images,
corrupted by Gaussian noise, simulating US and RX acquisitions are shown in
Figure 2. Each image contains four clusters (C=4). In the US image (Fig. 2(a)),
one region (smallest thickness) is confused with the background and in the RX
image (Fig. 2(b)) the greatest thickness is under-exposed and the thicker regions
are not well distinguished. The aim here is to exploit, through using the proposed
data fusion technique, the redundant and complementary information of the two
images in order to correctly segment the image in four clusters. The maximum of
plausibility is used as a decision rule. Figures 2(e) and 2(f) show the DS fusion
result obtained using median and average filters respectively. ¢ is set 0.05. Note
that within the segmented regions, some artifacts are present (Figs. 2(e)-(f)), re-
flecting the influence of noise present in the initial images (Figs. 2(a)-(b)) on final
segmentation. Both filters give a good segmentation result but the regions given
by the average operation are more homogeneous than in the median case. The
four regions are well brought out and this shows that informations provided by
two images are well exploited by the fusion scheme. This result also shows that
the estimated bpas are a good modeling of the information associated to simple
and compound hypotheses. This also shows the interest of taking into account the
contextual information in bpas estimation. In order to get a better insight into the
actual ability of the DS fusion based segmentation, in comparison with conven-
tional algorithms which exploit information only from one image, we give in Fig.
2(c) and 2(d) a comparison example. The segmentation results in Figs 2(c) and
2(d) have been obtained using the FCM algorithm. They correspond respectively
to the US and RX images respectively. When segmentation is performed with one
image, we observe that 23.94% and 34.94% of pixels have been mis-segmented
for RX and US images respectively. Segmentation errors have been largely re-
duced when exploiting simultaneously the two images through the use of DS fu-
sion approach including spatial information. Indeed, in the latter case, only 0.95%
of pixels have been mis-segmented. This good performance difference between
these two types of segmentation approaches can also be easily assessed by visually
comparing the segmentation results. Figure 3 illustrates the application of the pro-
posed fusion scheme to human brain Magnetic Resonance (MR) of three patients
with Multiple Sclerosis (MS) lesions (Figures 3(a)-(f)). Figures 3(a)-(c) represent
Ty-weighted images and Figures 3(d)-(f) the corresponding Proton Density (PD)
weighted images. Each pair of images (T3,PD) are strongly correlated and also
spatially registered, and show the MS lesions as hypersignal regions. The fused
images are shown in Figures 3(g)-(i). In each patient, regions such as white matter,
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grey matter, cerebrospinal fluid (CSF), background are correctly segmented. This
is of great interest in medical applications in particular the estimation of size and
volume of the brain tissues. However, the proposed scheme is not able to separate
the MS lesions region from CSF (Fig. 3(g)-(i)). This is due essentially to the fact
that pixels of CSF and MS lesions share the same intensities.

e

et

(d) (e) ®

Fig. 6.2. (a) US image. (b) RX image. (c) Fuzzy segmentation of US image. (d) Fuzzy segmentation
of RX image. Fused image obtained using median value (e) and average value of the membership
degrees (f).

6.6. Conclusion

In this paper, an original data fusion scheme to multisensor images segmenta-
tion based on the DS and fuzzy logic theories to take into account nonfuzzy and
fuzzy uncertainties is proposed. This methodology consists in estimating basic
probability assignment using fuzzy membership degrees derived from gray-level
image histogram. A contextual processing is introduced to integrate the spatial
correlation between adjacent pixels. The obtained results on synthetic and med-
ical images are encouraging. In this work, we make assumption that images are
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well registered. The presented results are limited to only one modality. Extensive
tests on real data and analysis of several decision rules are necessary in order to
evaluate the robustness of the method. Only filters with 3 x 3 size are used. Thus,
different window sizes must be tested to show their effect on the fusion results.

[—-: Bakground B White Matter . CSF+MS lesions : Grey Matter ‘

Fig. 6.3. Segmentation result of MR images obtained in 3 patients with MS lesions. (a), (b), (c) T2
weighted images. (d), (e), (f) PD weighted images. (g), (h), (i) DS fusion result of the three patients
using average operation.
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CHAPTER 7
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LAPAROSCOPIC SURGERY

Joan Climent and Pere Mars

Computer Eng. and Automatic Control dept. (UPC),
Pau Gargallo,5. 08028 Barcelona. Spain,

E-mail: Juan.Climent@upc.es

This paper presents a tracking algorithm for automatic instrument localization in
robotically assisted laparoscopic surgery. We present a simple and robust sys-
tem that does not need the presence of artificial marks, or special colours to
distinguish the instruments. So, the system enables the robot to track the usual
instruments used in laparoscopic operations. Since the instruments are normally
the most structured objects in laparoscopic scenes, the algorithm uses the Hough
transform to detect straight lines in the scene. In order to distinguish among
different instruments or other structured elements present in the scene, motion
information is also used. We give in this paper a detailed description of all stages
of the system.

7.1. Introduction

Laparoscopic surgery is a minimally invasive surgical procedure. The surgeon in-
serts instruments and a laparoscope into the patient’s body through multiple inci-
sions, and performs the operation viewing the images displayed on a video screen.
The main problem of such a technique lies in the difficulties of mutual understand-
ing between the surgeon and the camera assistant. The camera assistant also gets
tired in long operations and the image becomes unstable. Several robotized as-
sistance systems have been developed to deal with these new problems.!%12 All
different approaches presented in the literature use image processing techniques
to track the instrument so that it is always centered in the displayed image. Some
works'? use colour information, but because of the high variability of colours in
different scenes, the instruments must be coloured with an artificial colour. Oth-
ers'? use instruments that present artificial marks. We present in this paper a
system that tracks instruments that have neither been marked nor coloured. No
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specific marks are needed; the system works with the usual surgical instruments.
The system is based on a sequence of different image processing techniques. The
objective of this paper is to show, in detail, the way that these techniques have
been used, and the results obtained.

7.2. System Description

A system overview is shown in Fig. 7.1.
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Fig. 7.1.  System Overview.

The original image is filtered in order to reduce the influence of noise. To
extract edge orientations, a classical edge extractor is applied afterwards. The
straight lines present in the image are detected using the Hough transform. The
most prominent lines are selected. All straight lines that satisfy some heuristic
criteria are considered as possible targets. According to the last position of the
instrument in the scene, the best candidate between straight lines selected is cho-
sen, and its ending point marks the position on the terminal element. Once the
actual position of the instrument is determined, its position in the next frame will
be predicted. This position determines the location of the processing window of
the Hough table for the next frame. A description of all these stages is detailed in
the following subsections.
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7.2.1. Filtering stage

The effects of noise on the results of the transformation are a matter of concern
when dealing with real image data. Such noise may be due to random corruption
of the signal during the data acquisition process or it may be a normally distributed
random error in the localization of image points due to the effects of digitizing
continuous data. The characterization and prediction of the effects of noise have
been studied extensively.>*

In order to reduce the effects of noise on the edge orientation determination, a
Gaussian filter is applied to the original image in this first stage:

1 (2+4?)
e 207 (7.1)

hw,y) = 2mo?

As a smoothing mask, it has optimal properties in a particular sense: it re-
moves small-scale texture and noise as effectively as possible for a given spatial
extent in the image.

Another interesting property of the Gaussian is that it is rotationally symmet-
ric. This means that in all directions smoothing will be the same; there will not be
distortion in any direction. Since we are dealing with orientations, this isotropic
property is mandatory.

Finally, the Gaussian filter is separable:

(m2+y2) 2 2
h(z,y) = B LI SR B hip(x) - hip(y)
’ 2mo? V2o V2mo

(7.2)

A 2D Gaussian convolution can be implemented using two orthogonal 1D
Gaussian convolutions. Thus, the computational cost of the filtering stage is linear
instead of quadratic.

Fig. 7.2(b) shows the image output after the Gaussian filtering with a standard
deviation o = 1.5 and a kernel size of 7.

7.2.2. Edge orientation extraction

Edge orientations are needed to compute the Hough transform. The prior filtering
stage is mandatory since the precision in the orientation of gradient operators is
very sensitive to noise.

For extracting edge orientation a simple gradient operator is used. Given the
filtered image f(x,y), an approximation of the gradient direction 6(x,y) is com-
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puted as:

Ay
O(z,y) = atanE (7.3)
where Ay = f(x,y — 1) — f(z,y+ 1) and Az = f(z — 1,y) — f(x + 1,y)
The Sobel operator is not used in this stage. The justification is quite sim-
ple. The Sobel operator performs local smoothing. In our application there is
no need of new smoothing since the image has been filtered previously. So, the
computational load may be reduced by using the central difference masks instead.
The computational load is also reduced by considering only pixels whose gra-
dient magnitude is above a certain threshold, Th. Fig. 7.2(c) shows the orientation
image. Orientations have been quantified in 256 levels.

7.2.3. Hough transform computation

Paul Hough introduced the Hough transform in 1962." It is known that it gives
good results in the detection of straight lines and other shapes even in the presence
of noise and occlusion.

Our vision system detects the surgical instruments using the Hough transform.
Since the instruments show a structured shape, mainly straight lines, the Hough
transform is a powerful tool to detect them. There can be found in the literature
other tracking applications that also use the Hough transform; see, for example.?
Other works within the medical imaging discipline that make use of the Hough
transform include.®®

At this stage, the normal parameterization of the Hough transform is used to
extract the most significant straight lines in the scene.

xcosf + ysind = p (7.4)

where p and 6 are the length and orientation of the normal vector to the line from
the image origin. Each straight line is uniquely defined by p and 6, and for every
point in the original image (x,y) it is possible to create a mapping from feature to
the parametric space.

If we divide the parameter space into a number of discrete accumulator cells,
we can collect ’votes’ in the (p, 6) space from each data point in the (x, y) space.
Peaks in (p, 6) space will mark the equations of lines of co-linear points in the (x,
y) space.

Interested readers can find a good survey about Hough transform® . A book
which makes easily assimilated theory and advice available to the non specialist
concerning state of the art Hough transform techniques is.’
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For every pixel in the image, the gradient direction has been determined in
the last stage. Thus, the computation of distance p, becomes a single operation.
Edge direction information made available at the edge detection stage is the most
commonly used constraint on the range of parameters to be calculated.'*

The (p, 0) space has been implemented using a 256x256 array of accumula-
tors. All pixels, except those whose gradient magnitude is below the threshold
Th, are mapped to one point in the (p, #) space. The corresponding cells in the
accumulator are incremented every time a new pixel is mapped into it. Fig. 7.2(d)
shows a 3D representation of the Hough table in the (p, 6) space.

Peaks in the (p, ) space correspond to the presence of straight lines in the
scene. The maximum peak is selected as the longest straight line in the image.
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Fig. 7.2. (a) Original image. (b) Filtered image. (c) Gradient orientations. (d) 3D representation of
Hough table.
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7.2.4. Segment extraction

One useful property of the Hough transform is that the pixels that lie on the line do
not need to be contiguous. On the other hand, it can also give misleading results
when objects happen to be aligned by chance. Some pixels are not a part of
surgeon’s tool but noise pixels or some other edge with the same line components.

The tool ending is determined by the loss of continuity in gradient direction
along the straight line. Pixels along the straight line are traced until their orien-
tations present a significant change with respect to the line orientation. For every
pixel on the line we compute the difference between its gradient direction and line
direction. This difference is considered as a local error. Then this error is averaged
along the line. Fig. 7.3(a) shows the error in the orientations of all pixels along
the main straight line. Part of this line belongs to the surgeon’s tool. It can be seen
that the continuity in orientations is lost when the tool ends.

Fig. 7.3(b) shows, in white, pixels selected as belonging to the tool, and, in
black, those belonging to the background. The tool ending can then be located
once the pixels not belonging to the correct segment have been removed.

7.2.5. Heuristic filter

The longest line in the scene does not always belong to the instrument. Thus, some
extra information is needed to decide which one among the possible candidate
lines is the most suitable. Fig. 7.4 shows the ten longest straight lines in the image.
A heuristic filter and motion information must be used to reject false candidates.

Some heuristic information is used in order to reject false candidates.

The length of the straight line must be greater than a minimum fixed value.

Instruments always come into scene from out of the field of view of the cam-
era. Thus, straight lines must finish in a boundary of the scene.

Since the tracking system focuses the area of interest in the centre of the image,
only radial lines are candidates to be selected as surgeon’s tools.

All candidates that do not satisfy these conditions are automatically rejected.

7.2.6. Position prediction

Given the actual and last frame positions of the instrument, the next position is
predicted. A first order model is used. First, the speed of the instrument vy is
computed from two consecutive positions zx_1 and zy, with being z = (p, 0)
the position in Hough table at the k-th iteration:

Vg = T — The1 (7.5)
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Fig. 7.3.  (a) Error line profile. (b) Segment extraction. (c) Tool ending location.

Afterwards, the next position xk+1 is estimated:
Tht1 = Tk + T (7.6)

where T is the sample period between two processed frames. We process a frame
in 125 ms.

There must be certain continuity between the location of the peak in the (p, ¢)
space of the current frame and the location of the peak in the last frame. Thus,
not all the Hough table must be computed at every iteration, we only process
those pixels whose (p, 0) pair is within a window of acceptable values. Once the
next position Z1 has been estimated, the processing window is centered at this
new position for the next frame. The objective of this processing window is, of
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Fig. 7.4. Ten candidates, the longest straight lines in the image.

course, to increase the processing speed. The size of the processing window is
programmable. In our application it has been fixed to =20 degrees.

The estimated position is also used to select the best target from the list of
candidates.

7.2.7. Target selection

The position &4+ estimated in the last stage, will determine which one of the
remaining candidates is the most probable. The error between the positions of all
candidates, and the estimated position is then computed:

AbO; = 6;— ET, Ap; = pi— P (7.7)

Once these errors are computed for all candidates, the one closest to the esti-
mated position and with the highest value in the Hough transform accumulator is
selected. The function used is:

valHough; |AG; ] |Api|
= 1= - — 7.
d max(valHough) ( max |Ab;| maz | Ap;| 7o

where max(valHough) is the absolute maximum of the Hough table values.

7.3. Results

Our vision system has been implemented on a PC system with a 1.7Ghz. Pentium
III processor and a commercial image acquisition board. Processing time for the
complete process is 125 ms., which is suitable for a real-time tracking application.
The size of the processed images is 768x576 pixels.
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Table 7.1. Parameter values.

Parameter Description Value
Th Minimum gradient module 10

max |A0;]  Maximum variation of 6 between consecutive frames 20

max |Ap;|  Maximum variation of p between consecutive frames 35

Table 7.2.  Static test results.

Longest lines in scene % of correct identifications

Ist 77%
2nd 11%
3rd 4%
4th 4%
5th 2%
6th 1%
7th 1%
8th 0%
9th 0%
10th 0%

Some parameters are configurable and must be tuned by the user. We show in
Table 7.1 the values assigned in our application:

Table 7.2 shows the results of an experiment designed to show the percentage
of cases in which the correct tool corresponds to the straight lines detected. A
set of 128 images extracted from a real operation video have been used for the
experiment. The experiment has been divided in two stages: the first one is a
static test, and uses only the information provided by the image itself. The second
one is a dynamic test, and it takes into account the information obtained from the
previous images of the video sequence. The static test uses only the information
given by the Hough transform. The dynamic test uses the static information plus
the position prediction detailed in Sec. 7.2.6.

For each image, the ten top values of the Hough table are selected and sorted
by decreasing order. The coordinates (p, §) of these maxima in the Hough table
correspond to ten different straight lines in the image. The objective of the experi-
ment is to show when the correct surgeon’s tool straight line corresponds with the
lines detected in the Hough transform stage. The first column of Table 7.2 are the
longest straight lines in the Hough transform table, the second are the probabilities
that these lines correspond with the correct tool.

The dynamic test takes into account the information obtained from the previ-
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ous frames in the sequence, a position prediction (described in Sec. 7.2.6) and a
target selection (described in Sec. 7.2.7) are performed in order to detect the tool.
Using dynamic information the rate of correct detections goes up to 99%. Finally,
Fig. 7.5 and Fig. 7.6 show the results obtained with other different images.

Fig. 7.5. (a) Original image. (b) Gradient orientations. (c) 3D representation of Hough table (d) Tool
ending location.

7.4. Conclusion

We have presented a detailed description of all stages of a vision system. This
system performs a real-time tracking of the surgical tools in laparoscopic opera-
tions. The method presented uses the Hough transform to detect the presence of
structured objects in the scene. This technique has permitted the system to work
without colour restrictions or special marks on the instruments.
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= (d

Fig. 7.6. (a) Original image. (b) Gradient orientations. (c) 3D representation of Hough table (d) Tool
ending location.

The system can track tools whose orientations are within a 20 degrees interval
between two consecutive frames. Since eight frames are processed per second,
this means that angular speed of the tracked tool must be below 160 degrees per
second.

We get some false detections in some conflictive cases, due to:

- Tool goes out of the field of view. We get a very short straight line when
the tool progressively goes out from the visible area. This problem will be solved
when the robotic arm closes the loop and surgeon tools are always into the visible
area.

- Low contrast between the tool and the background. This problem is present
in areas with bad quality illumination. These areas are not suitable to perform any
surgical task.
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- Sudden movements of the tool. The constraints shown in Table 7.1 must
be respected. Anyway, it is not recommended that the robotic arm make sudden
movements in a live surgical operation. The tracking system must be inhibited
when such movements occur.
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Fractal image compression gives some desirable properties like
resolution independence, fast decoding, and very competitive rate-
distortion curves. But still suffers from a (sometimes very) high
encoding time, depending on the approach being used. This paper
presents a method to reduce the encoding time of this technique by
reducing the size of the domain pool based on the Entropy value of
each domain block. Experimental results on standard images show that
the proposed method yields superior performance over conventional
fractal encoding.

1. Introduction

With the ever increasing demand for images, sound, video sequences,
computer animations and volume visualization, data compression
remains a critical issue regarding the cost of data storage and
transmission times. While JPEG currently provides the industry standard
for still image compression, there is ongoing research in alternative
methods. Fractal image compression [1,2] is one of them. It has
generated much interest due to its promise of high compression ratios at
good decompression quality and it enjoys the advantage of very fast
decompression. Another advantage of fractal image compression is its

137
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multi-resolution property, i.e. an image can be decoded at higher or
lower resolutions than the original, and it is possible to '
sections of the image. These properties made it a very attractive method
for applications in multimedia: it was adopted by Microsoft for
compressing thousands of images in its Encarta multimedia
encyclopaedia [3].

Despite of all the above properties of fractal image compression, the
long computing in the encoding step still remains the main drawback of
this technique. Because good approximations are obtained when many
domain blocks are allowed, searching the pool of domain blocks is time
consuming. In other word, consider an N x N image and n x n range
blocks. The number of range blocks is (N /n)*, while the number of the
domain blocks is (N —2n +1)*. The computation of best match between
a range block and a domain block isO(n”). Considering n to be
constant, the computation of complexity search is O(N 4) .

Several methods have been proposed to overcome this problem. The
most common approach for reducing the computational complexity is the
classification scheme. In this scheme range and domain blocks are
grouped in classes according to their common characteristics. In the
encoding phase, only blocks belonging to the same class are compared,
thus saving a lot of computation while keeping the performance in terms
of image quality quite close to that of exhaustive search. Jacquin [2]
proposed a discrete feature classification scheme based on Ramamurthi
and Gersho approach [4]. The domain blocks are classified according to
their perceptual geometric features. Only three major types of block are
differentiated: shade blocks, edge blocks, and midrange blocks. In the
Fisher’s classification method [5], a given image block is divided into
four quadrants. For each quadrant, the average and the variance are
computed. According to certain combination of these values, 72 classes
are constructed. This method reduces the searching space efficiently.
However, it required large amount of computations and, the arrangement
of these 72 classes is complicated.

In clustering methods [6,7] the domain blocks are classified by
clustering their feature vectors in Voronoi cells whose centers are
designed from the test image or from a set of training images. For each
range block, matches are sought in the neighboring classes only. Another

'zoom-in" on
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discrete feature classification based on mean was proposed by Hurtgen
and Stiller [8]. The feature vector is constructed by comparing the sub-
block mean of each quadrant to the block’s mean. In this approach the
search area for a domain block is restricted to a neighborhood of the
current range. All the above approaches can only reduce the factor of
proportionality in O(N) the time complexity for a search in the domain
pool, where N is the size of the domain pool.

A different approach is to organize the domain blocks into a tree-
structure, which could admit faster searching over the linear search. This
approach is able to reduce the order of complexity from O(N) to O(log
N). The idea of tree-structured search to speed up encoding has long
been used in the related technique of Vector Quantization [9]. Caso et al.
[10] and Bani-Eqgbal [11] have proposed formulations of tree-search for
fractal encoding. In the feature vector approach introduced by Saupe in
[12,13] a small set of d real-valued keys is devised for each domain
which make up a d-dimensional feature vector. These keys are carefully
constructed such that searching in the domain pool can be restricted to
the nearest neighbors of a query point, i.e. the feature vector of the
current range. Thus the sequential search in the domain pool is replaced
by multi-dimensional nearest neighbor searching, which can be run in
logarithmic time. Unfortunately, the feature vector dimension is very
high, i.e. equal to the number of pixels in the blocks. This limits the
performance of this approach as the multi-dimensionality search
algorithms. Moreover large amounts of memory are required. Some
attempts to solve this problem are presented in [14].

Complexity reduction methods that are somewhat different in
character are based on reducing the size of the domain pool. Jacobs et
al.’s method uses skipping adjacent domain blocks [15]. Monro [16]
localizes the domain pool relative to a given range based on the
assumption that domain blocks close to range block are well suited to
match the given range block. Saupe’s Lean Domain Pool method
discards a fraction of domain blocks with the smallest variance [17]. The
latest survey on the literature may be found in [18-20].

In this paper a new method to reduce the encoding time of fractal
image compression is proposed. This method is based on removing the
domain block with high entropy, £ from the domain pool. In this way, all
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the useless domains will be removed from the pool achieving a more
productive domain pool. The proposed method can be extended to speed
up the hybrid fractal coders and improve their performance.

The rest of this paper is organized as follows. Section 2, briefly
describes fractal image coding and the baseline algorithm. In Section 3,
definition of entropy and using it in the proposed method to reduce the
encoding time of fractal image compression is presented, followed by
experimental results and discussion in Section 4. The conclusions of the
present work are summarized in Section 5.

2. Fractal Image Coding

2.1. Principle of Fractal Coding

In the encoding phase of fractal image compression, the image of size
NxN is first partitioned into non-overlapping range blocks R,
{R,R,,...R,} of a predefined size BxB. Then, a search codebook
(domain pool €2) is created from the image taking all the square blocks
(domain blocks) D, { D,,D,,...D,} of size 2Bx2B, with integer step L
in horizontal or vertical directions. To enlarge the variation, each domain
is expanded with the eight basic square block orientations by rotating 90
degrees clockwise the original and the mirror domain block. The range-
domain matching process initially consists of a shrinking operation in
each domain block that averages its pixel intensities forming a block of
size BxB.

For a given range R ;, the encoder must search the domain pool € for
best affine transformation w;, which minimizes the distance between the
image R;and the image w,(D;), (ie. w,(D,)®R,). The distance is
taken in the luminance dimension not the spatial dimensions. Such a
distance can be defined in various ways, but to simplify the computations
it is convenient to use the Root Mean Square RMS metric. For a range
block with n pixels, each with intensity 7, and a decimated domain block
with 7 pixels, each with intensity d; the objective is to minimize the
quality
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The parameters that need to be placed in the encoded bit stream are
§; ,0, index of the best matching domain, and rotation index. The
range index i can be predicted from the decoder if the range blocks are
coded sequentially. The coefficient S ; represents a contrast factor, with
|5, |<1.0, to make sure that the transformation is contractive in the
luminance dimension, while the coefficient o, represents brightness
offset.

At decoding phase, Fisher [5] has shown that if the transforms are
performed iteratively, beginning from an arbitrary image of equal size,
the result will be an attractor resembling the original image at the chosen
resolution.
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2.2. Baseline Fractal Image Coding Algorithm

The main steps of the encoding algorithm of fractal image compression
based on quadtree partition [5] can be summarized as follows:

Step 1: Initialization (domain pool construction)
Divide the input image into N domains, D,
For (j=1;j < N;j++)
Push D ; onto domain pool stack Q2
Step 2: Choose a tolerance level £ ;
Step 3: Search for best matches between range and domain blocks
For(i=1;i < num_range;i++) {
min_error = £ ;
For (j=1;j < num_domain; j ++) {
Compute s, 0;
If (0 < s<1.0)
If (E(R;,D; ) <min_error) {
min_error =E(R,, D I
best_domain[i] =j ; }

}

If (min_error== /()

Set R ; uncovered and partition it into 4 smaller blocks;

Else
Save coefficients(best domain, s, 0);
H

In this algorithm, parameter /. settles the fidelity of the decoded
image and the compression ratio. By using different fidelity tolerances
for the collage error, one obtains a series of encodings of varying
compression ratios and fidelities. For a range block if /. is violated for
all the domain blocks, that is the range block is uncovered, the range
block is divided into four smaller range blocks, and one can search for
the best match domains for these smaller range blocks. At the end of
step 1 the domain pool € has N domain (i.e. all domains).
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3. The Proposed Method

3.1. Entropy

Assume that there exists a set of events S= { x,, x,,... x, }, with the
probability of occurrence of each event p(x;) = p,. These probabilities,
P={p,, p,,...p, },aresuch that each p, 20, and 2:1:1 p; =1
The function,
I(xi):_logpi (5)
is called the amount of self-information associated with event Xx,.
This function is a measure of occurrence of the eventx;. The function /
focuses on one event at a time. In most situations, however, and certainly
in the context of data compression, one has to look at the entire set of all
possible events to measure content over the entire set. An important

concept introduced by Shannon is entropy associated with a set of events,
which takes the form:

H(p,,py»p,) =H(s)==) p;logp, (6)

Entropy can be defined as the average self-information that is, the
mean (expected or average) amount of information for an occurrence of
an eventx,. In the context of coding a message, entropy represents the
lower bound on the average number of bits per input value. The function
H has the following lower and the upper limits:

I 1 1
0=H(1,0,0,..0) < H(p,p,,...p,) < H(—,—,...—) =logn (7)
nn n
In other words, if the events are equally likely, the uncertainty is the
highest since the choice of an event is not obvious. If one event has
probability 1 and the others probability of 0, the choice is always the

same, and all uncertainly disappears.

3.2. The Entropy Based Encoded Algorithm

Equation (1) is a full search problem and as mentioned previously is
computationally intensive. One of the simplest ways to decrease
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encoding time of this full search problem is to decrease the size of the
domain pool in order to decrease the number of domains to be searched.
The proposed method reduces the encoding time of fractal image
compression by performing less searches as opposed to doing a faster
search, by excluding many of domain blocks from the domain pool. This
idea is based on the observation that many domains are never used in a
typical fractal encoding, and only a fraction of this large domain pool is
actually used in the fractal coding. The collection of used domains is
localized in regions with high degree of structure [17]. Figure (1) shows
the domain blocks of size 8x8 that are actually used in the fractal code of
Lena image. As expected the indicated domains are located mostly along
edges and in the regions of high contrast of the image.

Analyzing the domain pool, there is a very large set of domain blocks
in the pool with high entropy, which are not used in the fractal code.
Thus, it is possible to reduce the search time by discarding a large
fraction of high entropy blocks, which affect only a few ranges. For these
ranges a sub-optimal domains with smaller entropy may be found. In this
way, the domain pool is constructed from blocks with the lowest entropy
instead of all domains. In this case, the encoding time is heavily reduced

Figure 1. Domains of size 8x8 that are used for fractal coding of 512x512 Lena are
shown in black.
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by a priori discarding those domains from the pool, which are unlikely to
be chosen for the fractal coding. Eq. (6) is used to calculate the entropy
value for each domain block. According to this value a decision is taken
to determine if this domain can become a part of the domain pool or not.

A parameter & will control the domain entropy value in the
implementation, with & being a quality parameter since it determines
the size of the domain pool. The proposed method can only reduce the
factor of proportionality in the O(N) complexity, where N is the domain
pool size. But one can use the Tree approach [21] on the resulting
efficient domain pool after removing all useless domain blocks, which is
able to fundamentally reduce the order of encoding time from O(N) to
O(log N).

The baseline algorithm mentioned above is modified in such a way
that the domain pool () contains only domain blocks which have a
certain entropy value. The main steps of the modified encoder algorithm
of fractal image compression can be summarized as follows:

Step 1: Initialization (domain pool construction)
Choose parameter & ;

Divide the input image into N domains, Dj
For(j=1;j £ N;j++) {
Ent =entropy (D s
If(Ent < &)
Push D ; onto domain pool stack €2}

Step 2: Choose a tolerance levels ¢ s

Step 3: Search for best matches between range and domain blocks
For(i=1;i £ num range;i-++) {
min_error = { . ;
For (j=1;j £ num_domain;j++) {
Compute s, 0;
If (0 < s<1.0)
If (E(R;, D, ) <min_error) {

min_error = E(R;, D, );

best_domain[i] =j ; }
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If (min_error== /)

Set R ; uncovered and partition it into 4 smaller blocks;

Else
Save coefficients(best_domain, s, 0);

}

At the end of step 1 the domain pool has num domain domain
according to & value.

4. Experimental Results

This section presents experimental results showing the efficiency of the
proposed method. The performance tests carried out for a diverse set of
well-known images of size 512x512 gray levels with 8bpp, on a PC with
Intel Pentium III 750 MHz CPU and 128MB memory under windows 98
operating system using Visual C++6.0 programming language and the
time is measured in seconds. Moreover, the scaling coefficient (contrast)
restricted to values between 0 and 1 in order to avoid searching domain
pool twice (i.e. allowed only positive scaling factors in the gray level
transformation). To ensure a compact encoding of the affine trans-
formation, the value of contrast and brightness are quantized using 4 and
6 bits for contrast and brightness, respectively, hence the compression
ratio is 95% and 89% for fixed range size and quadtree partitions
respectively. This study focuses on the implementation issues and
presents the first empirical experiments analyzing the performance of
benefits of entropy approach to fractal image compression. First, the
performance of the proposed method with fixed range size partition is
examined. The size of the range block is set to be 8x8 pixel, and hence
the domain size is 16x16, with domains overlapping i.e. the domain step
L (distance between two consecutive domains) is divided by 4. The result
is shown in table (1). Second, the same experiment is carried out with
well-known technique of quadtree partitioning, allowing up to three
quadtree levels. The average tolerated error between the original image
and its uncompressed version is set to be £ . =2.0. The results are shown
in table (2).
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Table 1. Performance of fixed range size coding of four test images.

E Lena Peppers Boat Hill
Time |PSNR] Time JPSNR | Time JPSNR] Time JPSNR
0 ]124.99]136.34]119.65]37.51 |122.59]28.31] 119. 56 ]34. 93
1 106.41]36.34]111.81]37.49 ]1100.20]28.28] 115.86 | 34.93
1.2 | 100.34]36.32] 110.08]37.46 | 92.26 |28.25]| 105.86 |34.92
1.5 | 87.68 |36.30] 98.37 |37.39 | 79.04 |28.18] 86.06 |34.86
1.8 | 76.02 |36.23] 86.54 |37.34 | 64.06 |27.99] 65.67 |34.78
2 68.56 136.12] 74.99 |37.29 | 58.77 |27.98| 51.77 |34.65
2.5 | 50.36 |35.98] 55.01 |37.23 | 45.42 |27.76] 21.67 |34.37
2.8 | 40.45 |35.95]| 40.03 ]37.08 | 39.55 |27.73| 12.38 |34.23
3 32.89 |35.73] 31.99 |36.98 | 35.50 |27.62| 8.67 ]33.89
3.5 | 18.26 |35.36] 13.69 |36.56 | 22.86 |27.38] 5.38 ]33.46
3.8 | 10.82 |34.83] 6.03 |35.59 | 15.93 |27.22] 4.52 ]33.16
4 5.80 |34.39] 3.01 |34.50 | 11.56 |26.89| 4.16 ]33.15

Table 2. Performance of quadtree partition coding of four test images.

& Lena Peppers Boat Hill
Time |PSNR| Time |PSNR| Time |PSNR| Time |PSNR
0 [797.78|40.66] 749.63 |40.50]|1151.26]34.23]1304.45|39.14
760.91140.65| 745.91 |40.51 | 1144.31|34.12]1323.31|39.12
1.2 |753.86|40.65] 743.14 |40.52]1201.96]34.27]|1313.14|39.12
1.5 | 712.72140.64] 746.93 140.51 J1180.62]34.23]1318.08]39.09
1.8 | 647.72140.59] 736.98 |40.50] 981.00 | 34.2 |1192.09]39.09
2 ]601.98]140.56] 629.49 140.49 | 880.75 |34.27]1062.43]139.05
2.5 |489.06]40.48] 553.58 |40.45] 632.66 |34.28] 677.08 |38.96
2.8 1417.90]40.39] 477.20 |40.49 | 541.81 |34.17] 442.98 | 38.85
3 1367.91]40.36] 398.01 |40.43| 494.21 |34.11] 317.13 |38.75
3.5 | 246.4 140.12] 236.96 |40.32 | 408.76 |33.79] 121.95 | 38.69
3.8 1174.00]39.88] 127.97 139.98 ] 327.58 |33.71] 80.03 |38.63
4 1120.18]39.83] 64.09 |39.71] 250.91 |33.53] 65.82 |38.51

The results in tables (1) and (2) show that the encoding time scales
linearly with & . This is expected since the major computation effort in
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the encoding lies in the linear search through the domain pool. For the
case without domain pool reduction & =0 (full search) there is no savings
in the encoding time as shown in Fig. (2). Also, in the case of fixed range
size partition the loss in quality of the encoding in terms of fidelity is
larger than for quadtree partition. This is caused by the fact that some
larger range can be covered well by some domains, which are removed
from the domain pool at larger values of & (e.g. &€ =2.5). As a
consequence some of these ranges are subdivided and their quadrants
may be covered better by smaller domains than the larger range.

This simple entropy approach leads to very significant savings in
encoding time and is similar to the approach used in [5]. With fixed
range size partition, it causes only negligible or no loss in the equality of
image, thereby reducing by 2 the encoding time (at & =2.5). In the
quadtree case, when & =3.8 the encoding time of Hill image is 80.03 sec
while the PSNR is 38.63 dB. For comparison, the baseline (full search)
required 1304.45 sec and the PSNR achieved is 39.14 dB. This
represented a speed up factor of over 16 at the expense of a slight drop of
PSNR of 0.51 dB. Generally, the speed-up in terms of actual encoding
time is almost 7 times while the loss in quality of the image is almost
0.83 dB. This compares well with Saupe’s Lean Domain Pool Method,

x102

=
(=1

7} Y

6 &I\.

Time/ seconds
h
&

Parameter &

Figure 2. Encoding time versus epsilon & for 512x512 Lena image.
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which achieved comparable speedup of 8.9 at the expense of a drop of
1.7dB for Lena image [18]. Also, with Chong Sze [22], which achieved a
speed-up of 9.3 with 0.87 dB loss for the same image. Figures (3), and
(4) show examples of reconstructed images, which were encoded using
the entropy method with fixed range size and quadtree partitions.

Fixed range size partition Quadtree partition
Encoding time: 5.8s. Encoding time: 120.18s.
Quality: 34.39dB Quality: 39.83 dB.

Figure 3. Lena 512x512 image.

Fixed range size partition Quadtree partition
Encoding time: 3.01s. Encoding time: 64.09s.
Quality: 34.50dB Quality: 39.71dB.

Figure 4. Peppers 512x512 image.
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Figure 5. Peppers 512x512 image encoded in 2.93s by the proposed method and the
PSNR of the reconstructed image is 33.56dB.

Finally, the proposed method seems to be applicable in situations
where extremely fast encodings are desired and some quality degradation
can be tolerated (e.g. by choosing & 2> 3.8). For example, Fig. (5) shows
that the Peppers image is coded in 2.93s with a quality of 33.56 dB
(while the full search encoding time is 749.63s with a quality of 40.50
dB). This means that the image fidelity is still acceptable at least for
some applications where high fidelity is not an absolute requirement.

5. Conclusions

In this paper a parameterized and non-adaptive version of domain pool
reduction is proposed, by allowing an adjustable number of domains to
be excluded from the domain pool based on the entropy value of the
domain block, which in turn reduced the encoding time. Experimental
results on standard images showed that removing domains with high
entropy from the domain pool have little effect on the image quality
while significantly reduce the encoding time. The proposed method is
highly comparable to other acceleration techniques. Next step in our
research is to use the proposed method to improve the speed of hybrid
coders (gaining better results than JPEG) that are based on fractal coders
and transform coders so as to improve their performance.
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CHAPTER 9

ROBUSTNESS OF A BLIND IMAGE WATERMARK DETECTOR
DESIGNED BY ORTHOGONAL PROJECTION

Cong Jin and Jiaxiong Peng

Department of Computer Science, Central China Normal University
Wuhan 430079, P.R.China
E-mail: jincong@mail.ccnu.edu.cn

Digital watermarking is a key technique practical intellectual property
protecting systems and concealment correspondence systems. In this
paper, we discussed a blind detection method for the digital image
watermark. The theories research show that the orthogonal projection
sequence of a digital image is one-to-one correspondence with this
digital image. By this conclusion, we designed a novel blind watermark
detector. In this detector, to calculate the correlation value between the
image and watermark, the intensity information of digital image is not
used, and the orthogonal projection sequence of this image is used.
Experiment results show that this watermark detector not only to have
very strong resistant ability to translation and rotation attacks, but also
to have the good robustness to Gaussian noise. Performance of this
watermark detector is better than general detector designed by the
intensity information directly. The conclusions of this paper are useful
to the research in the future.

1. Introduction

Digital watermarking[1,2], the art of hiding information into multimedia
data in a robust and invisible manner, has gained great interest over the
past few years. There has been a lot of interest in the digital
watermarking research, mostly due to the fact that digital watermarking
might be used as a tool to protect the copyright of multimedia data. A
digital watermark is an imperceptible signal embedded directly into the
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media content, and it can be detected from the host media for some
applications. The insertion and detection of digital watermarks can help
to identify the source or ownership of the media, the legitimacy of its
usage, the type of the content or other accessory information in various
applications. Specific operations related to the status of the watermark
can then be applied to cope with different situations.

A majority of the watermarking algorithms proposed in the literature
operate on a principle analogous to spread-spectrum communications. A
pseudo-random sequence, which is called digital watermark, is inserted
into the image. During extraction, the same pseudo-random sequence is
correlated with the estimated pattern extracted from the image. The
watermark is said to be present if the computed correlation exceeds a
chosen threshold value. Among this general class of watermarking
schemes, there are several variations that include choice of specific
domain for watermark insertion, e.g. spatial, DCT, wavelet, etc; and
enhancements of the basic scheme to improve robustness and reduce
visible artifacts. The computed correlation depends on the alignment of
the pattern regenerated and the one extracted from the image. Thus
proper synchronization of the two patterns is critical for the watermark
detection process. Typically, this synchronization is provided by the
inherent geometry of the image, where pseudo-random sequences are
assumed to be placed on the same image geometry. When a geometric
manipulation is applied to the watermarked image, the underlying
geometry is distorted, which often results in the de-synchronization and
failure of the watermark detection process. The geometric manipulations
can range from simple scaling and rotation or cropping to more
complicated random geometric distortions as applied by Stirmark[3].

Different methods have been proposed in literature to reduce/prevent
algorithm failure modes in case of geometric manipulations. For non-
blind watermarking schemes, where the original image is available at the
detector, the watermarked image may be registered against the original
image to provide proper synchronization[4]. For blind watermarking
schemes, where the original image is not available at the detector,
proposed methods include use of the Fourier-Melin transform space that
provides rotation, translation, scale invariance[5], and watermarking
using geometric invariants of the image such as moments[6] or cross-
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ratios[7]. Hartung et a/[8] have also proposed a scheme that divides the
image into small blocks and performs correlation for rotations and
translations using small increments, in an attempt to detect the proper
synchronization.

In this paper, the orthogonal projective sequence of a digital image is
analyzed. A blind image watermark detector is designed by using the
orthogonal projective sequence of digital image. In Section 2, we first
discuss definition and its properties of the orthogonal projective
sequence of a digital image. A conclusion, the orthogonal projection
sequence of a digital image is one-to-one correspondence with this
digital image, is obtained. By this conclusion, we designed a blind
watermark detector. Then, in Section 3, we present our experimental
results. Experiment results show that this watermark detector not only to
have very strong resistant ability to translation and rotation attacks, but
also to have the good robustness to Gaussian noise. Finally, Section 4
contains our conclusions.

2. The Design Method of the Watermark Detector

We assume that the real image intensity function I(x, y) is piecewise
continuous, and has non-zero in a bounded domain, where
x=0,1....m-1, y=0L...,n—-1, mxn=N.
The geometric moments[9] of order (p+q) of I(x, y) are defined as
+00 400
M, = .[ pryql(x,y)dxdy (D)
where p, ¢=0,1,2,...,0. By [10], we know that the infinite sequence
{M ,,} 1s one-to-one correspondence with image intensity function /(x, y)
whenever [(x, y) is piecewise continuous. If the integral value is
calculated by equation (1), we can add the definition /(x, y)=0 in the
outside bounded domain.
Let H be a Hibert space, and {g;(x, )}, be normal orthogonal basis
of H. We have
0, i#j
jjgi(x,y)g (X, y)dxdy = {1 .
A

>
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Let I(x, y) € H and be square integrable function, we define

@, = a(g, (e ), = [[ 1 g, (r)dedy,  i=12,.. @)
A

Where, «, is called the coordinate of /(x, y) with respect to this basis,
also is called the orthogonal projection.

Is it one-to-one correspondence between infinite sequence {¢;};-; and
image function /(x, y)? Because the existence of function /(x, y), to
satisfy the equation (2), can’t be guaranteed only by arbitrarily infinite
sequence {¢;},, this one-to-one correspondence can’t exist generally.
But if {¢;}, satisfying the some conditions, this one-to-one
correspondence may exist. This is conclusion of our Theorem.

Theorem If the function series Za_/g ;(x,y)1s uniformly convergent,
j=1
then there is an unique function /(x, y) such that /(x, y) satisfy the
equation (2).

Proof Let I(x, y):Za ;€;(x,») . By uniformly convergent of the
J-1

function series Za ;g;(x,»), we indicate that /(x, y) exists, and
J=1

[[1e g eraxay = [[ g0 Y a g pdsdy, =12,
4 4 J=1

To exchange calculus order between the integral and sum and to use
the normal orthogonality of the function systems {g;(x,»)};;, we may
obtain

[[rengcedy = e, i=12...
A

Therefore, I(x, y) satisfies the equation (2). Following, we discuss
uniqueness of image /(x, y).

Let I,(x,y)# L(x,y), (x,y)e 4, and their projection sequences are
same. We notice that

a; = ”h(&ﬁ&(%y)dxdy, a; = H[z(x,y)gi(x,y)dxdy, i=12,...
4 A
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By subtraction of these two equations, we obtain

[[e:enthen-nheydy =0, i=12...
A4

By the completeness[10] of the basis, 7,(x,y)=1,(x,y) can be
obtained, where (x,y)e 4 . This is contradictory with assumption of
Theorem, therefore /(x, y) is unique.

By this Theorem we know that the orthogonal projective sequence
{a;}7,, obtained by general normal orthogonal basis {g;(x,y)}r,, iS one-
to-one correspondence with image intensity function /(x, y) under the
condition of Theorem. Therefore, the infinite sequence {¢;}-, is a
feature sequence of digital image /(x, y).

Because only finite terms can be researched in the {g;(x,y)};,, we let
S = {g,(x,»)}Y,. From now, we research digital watermark is only on the
S.

It is very common that the digital watermarking is embedded using
multiplicative embedding method. The watermarked image data J(x, y)
are now formed from the digital watermarking W(x, y) and the original
image data /(x, y) according to

J,y)=1(x,y)+o-1(x,y)-W(x,p), x=0L...m=1 y=01L...n-1 (3)

where w is the strength factor controlling the watermarking strength.
This way of embedding digital watermarking was proposed, among
others, by Cox et.al.[11].

We denote the finite projective sequence of digital watermarking
W(x, y) is w={w}Y, . One can attack watermarked image J(x, y) by
general image processing operations, such as translation, rotation, noise,
etc., or by combining these operations. Attacked image J(x,y) of J(x, y)
may be obtained. We denote the finite projective sequence of attacked
image J(x,y) is y = {,}%.

Many measurements have been proposed for blind watermark
detection[12]. Among them, a frequently used one is the normalized
correlation measurement, which measures the cosine angle of the two
feature vectors. In this paper, we let two feature vectors are w and y
respectively, by means of
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Zwm

—ﬁ § \/5 @)

To detect a watermark in a possibly watermarked image J(x,y), we
calculate the correlation between the image J(x,y) and the W(x, y). In
general, W(x, y) generated using different keys have very low correlation
with each other. Therefore, during the detection process the correlation
value will be very high for a W(x, y) generated with the correct key and
would be very low otherwise. During the detection process, it is common
to set a threshold p to decide whether the watermark is detected or not.
If the correlation exceeds a certain threshold p , the watermark detector
determines that image J(x,y) contains watermark W(x, ).

Although the Fourier transformation[10] has many advantages for
image signal processing, its operation speed is influenced by the real and
imaginary part calculated respectively. We know that Walsh function
system[13] is a complete normal orthogonal basis, therefore, it can
become a basis when orthogonal projection sequence of digital image is
calculated. In addition, each Walsh function value is always 1 or -1, and
it is easy to obtain the kernel matrix, so the calculation is simple and
operation speed can be increased.

According to arrangement order, the Walsh function can be generated
by three methods. In this paper, the Walsh function is generated using the
Hadamard matrix.

By the one dimensional Walsh function systems, the two dimensional
Walsh function systems can be generated according to following as
arrangement order

c=

Walsh(0, x) Walsh(0, y), Walsh(0, x) Walsh(1,y), ... , Walsh(0, x) Walsh(n-1, y),
Walsh(1, x) Walsh(0, y), Walsh(1,x) Walsh(1, y), ... , Walsh(1, x) Walsh(n-1, y),

Walsh(m-1,x)Walsh(0,y),Walsh(m-1,x) Walsh(1,y),...,Walsh(m-1,x)Walsh(n-1,y)

The mxn two dimensional Walsh functions are generated altogether.
For a digital image, according to the above method, we can obtain



Robustness of a Blind Image Watermark Detector 159

projection matrix of this digital image. The projection matrix has the
same size with this digital image. Of course, if the digital image has
bigger size, we can’t use too many two dimensional Walsh functions.
How much two dimensional Walsh functions are used, it should be
decided according to actual situation.

3. Experiment Results and Discussion

In these experiments, we will investigate the robust detection problem of
blind digital watermarking. Let us consider 512x512 grayscale images.
Let Fig.1 be an original image. 1000 stochastic matrixes W; (i=1, 2, ...,
1000), their elements drawn from a zero-mean Gaussian distribution, are
generated randomly. Among them, the Wiy is a digital watermarking
generated with the correct key, and otherwise generated with the
incorrect key. Each W; is a m>xn matrix. Fig.2 is the watermarked image
for embedding Wy into Fig.1 using multiplicative method, when
»=0.03.

)

Figure 1. The original image

Figure 2. The watermarked image
(@ =0.03)

3.1. Performance Test of Two kinds of Methods

For watermarking detection problem, the normalized correlations are
computed by the intensity information of digital image (called Detector
1) and orthogonal projection sequence (called Detector 2) of this image,
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respectively. For a digital image, the equation (2) is rewritten following
as

m—1 n—1
o; = Z I(k,D)Walsh(i,k)Walsh(j,l), i =0,1,....m—1; j=0,],....n—1
k=01

Il
(=]

Fig.3(a) is output result of Detector 1, and Fig.3(b) is output result of
Detector 2. We notice that the peak values of two Detectors are created
all at output position 500. Therefore, two detectors can detect the water-
mark successfully. However, by comparing, performance of Detector 2 is
better than Detector 1’s. Because the threshold value choice range of
Detector 2 is bigger than the Detector 1’s, which can guarantee the lower
false alarm probability.

100 200 =00 400 s00 [=[=T=] Foo S00 El=T=] 1000

(a) Output result of Detector 1

=] EY=T=1 =00 =00 aoo =00 [El=Ta] Too s00 ElaTal 1000

(b) Output result of Detector 2

Figure 3. The comparison of the output results of two Detectors

3.2. Test of Anti-Noise Attack

Fig.4(a) is result image generated by zero-mean Gaussian noise with
variance 0.01 adding to Fig.2.
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We detect W5 to Fig.4(a) to use two detectors respectively, and the
Fig.4(b) and (c) are their output results.

o.o1s

EY=I=1 =00 =00 aoo [={=Ta) [Sl=Ta) Ed=T=) =00 SO0 Ef=[="=]

(b) Output result of Detector 1

o EY=I=1 p=Tara) [ET=Ta] aoo [={=Ta) [=l=Ta) E=T=) S00 SO0 Ef=[="=]

(c) Output result of Detector 2

Figure 4. The comparison of the output results of two Detectors.

From the Fig.4(b) and (c) we know that Detector 1 can't detect Wiy
correctly, and Detector 2 can generate a higher the peak value in 500
position. This show that Detector 2 is not sensitive to noise, and it has the
very strong anti-noise ability. This is because the projection character-
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istic of digital image is integral characteristic of this image, and integral
calculus of digital image has the smooth function, therefore Detector 2
has the anti-noise attack ability.

3.3. Test of Anti-Rotation Attack

Fig.5(a) is a result image when Fig.2 is rotated 5 degrees.

(a) This is an image by rotating Fig.2 according to 5 degrees.

We detect W5 to Fig.5(a) to use two detectors respectively, and the
Fig.5(b) and (c) are their output results.

DO b N C N e 0D

=] E=I=] f=mTa) [El=Ta] aoo =00 [E=Te) Too S00 SO0 To00

(b) Output result of Detector 1
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o EY=I=1 =00 =00 aoo [={=Ta) [Sl=Ta) Ed=T=) =00 Soo Ef=[="=]

(c) Output result of Detector 2

Figure 5. The comparison of the output results of two Detectors.

From the Fig.5(b) and (c) we know that Detector 1 can't detect Wi
correctly, and Detector 2 can generate a higher the peak value in 500
position. This show that Detector 2 is not sensitive to rotation, it has the
very strong anti-rotation ability. This is because the projection character-
istic of digital image is internal characteristic of this image, and its
existence don’t depend on the pixel position. Therefore Detector 2 is not
sensitive to rotation attack.

3.4. Test of Anti-Translation Attack

Fig.6(a) is a result image when Fig.2 is translated 3 pixel rightwards and
downward respectively.

(a) This is an image which is obtained by translating Fig.2
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We detect Wiy to Fig.6(a) to use two detectors respectively, and the
Fig.6(b) and (c) are their output results.

=] EY=T=1 =00 =00 aoo =00 [El=Ta] Too s00 ElaTal 1000

(b) Output result of Detector 1

"
]

a

[u]
T
L

[ul
T
L

DO ENDNGS&D

=] 100 =00 ET=T=] Aao00 s00 [==T=] Foo s00 El=T=] 1000

(c) Output result of Detector 2

Figure 6. The comparison of the output results of two Detectors.

From the Fig.6(b) and (c) we know that Detector 1 can't detect Wiy
correctly, are Detector 2 can generate a higher the peak value in 500
position. This show that Detector 2 is not sensitive to translation, it has
the very strong anti-translation ability. Its reason is the same with
Detector 2 has the very strong anti-rotation ability.

3.5. Test of Anti-Other Attack

For two detectors, the other attacks, such as filtering, JPEG compression
etc, are tested. By these experiments we know that, for these attacks, two
detectors can't detect Wsgy correctly. This show that performance of
Detector 2 isn’t more superior than Detector 1’s in the aspects of
resisting filtering and JPEG compression efc.
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4. Conclusion

In this paper, the blind watermark detection is realized partly by
orthogonal projection sequence of digital image. By experiment we find
that the blind watermark detector, the normalized correlation value is
calculated by orthogonal projection sequence of digital image, has the
good robustness to Gaussian noise attack, rotation attack, and translation
attack. It points out a new way for designing the better blind watermark
detector.
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CHAPTER 10

SELF-SUPERVISED ADAPTATION FOR ON-LINE SCRIPT
TEXT RECOGNITION

Lionel Prevost and Loic Oudot

Universit Pierre et Marie Curie
LISIF / PARC BC 252

4 Place Jussieu, 75252 Paris Cedex 05, France

We have recently developed in our lab a text recognizer for on-line texts writ-
ten on a touch-terminal. We present in this paper several strategies to adapt this
recognizer in a self-supervised way to a given writer and compare them to the
supervised adaptation scheme. The baseline system is based on the activation-
verification cognitive model. We have designed this recognizer to be writer-
independent but it may be adapted to be writer-dependent in order to increase
the recognition speed and rate. The classification expert can be iteratively mod-
ified in order to learn the particularities of a writer. The best self-supervised
adaptation strategy is called prototype dynamic management and gets good re-
sults, close to those of the supervised methods. The combination of supervised
and self-supervised strategies increases accuracy again. Results, presented on a
large database of 90 texts (5,400 words) written by 38 different writers are very
encouraging with an error rate lower than 10 %.

10.1. Introduction

Recently, handheld devices like PDAs, mobiles phones, e-books or tablet PC have
became very popular. In opposition to classical personal computers, they are
small, keyboard-less and mouse-less. Therefore, electronic pen is very attrac-
tive as pointing and handwriting device. Such a device is at the frontier of two
research fields: man-machine interface and handwriting recognition.

In this paper, we focus on the problem of handwriting recognition for hand-
held devices with large screen on which we can write texts. For such an applica-
tion, recognition rate should be very high otherwise it should discourage all the
possible users. With the last handwriting recognizers on the market (Microsoft
Windows XP Tablet Edition, Apple Ink, myScript...,) the recognition rate has
became acceptable but is not high enough. The major problem for these recog-
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nizers is the vast variation in personal writing style. Updating the parameters of a
writer-independent recognizer to transform it into a writer-dependent recognizer
with a higher accuracy can solve this difficulty. The systems listed above are not
able to adapt themselves to a given writer. We can get better recognition rates if
we adapt a writer-independent recognizer with an adequate architecture and trans-
form it quickly in a writer-dependent system. However, it should not be forgotten
that the use of a pen as input modality has to be user friendly. So, the training step
must be as shorter as possible or - better - totally hidden for the user.

Traditional adaptation technics require the writer intervention (the so-called
supervised adaptation). We propose in this article several self-supervised adap-
tation scheme that we compare to the already existing techniques like supervised
adaptation.

The article is organized as follows. In section 2, we present a review of the
various techniques of adaptation. In section 3, we describe the writer-independent
baseline system. In section 4, we describe the different adaptation strategies. In
section 5, we present a combination between self-supervised and supervised meth-
ods to achieve very good results. Finally, conclusions and prospects are given in
section 6.

10.2. Literature review

The idea of writer adaptation was revealed by researches in the field of perceptive
psychology. It has been shown that, in the case of a hardly readable writer, it is
easier to read a word if we have already read other words written by the same
person. This phenomenon is called the graphemic priming effect.! Thus, we learn
the user writing characteristics from the words we can read, and then, we use this
new knowledge to read the remaining words.

In the literature, we consider two adaptation strategies: systems where the
adaptation step takes place once first before use (called off-line) and systems with
continuous adaptation (on-line).

Most systems>™ using an off-line adaptation scheme need a labeled database
of the writer. These examples are use to make a supervised training of the system.
Thus, the system learns the characteristics of this particular writer before being
used.

On the other hand, the following systems evolve continuously during use.

The on-line handwriting recognition and adaptation system of® uses a super-
vised incremental adaptation strategy. The baseline system uses a single MLP
with 72 outputs (62 letters and 10 punctuation marks). An adaptation module, at
the output of the MLP modifies its output vector. This adaptation module is a RBF
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(Radial Basis Function) network. The user informs the system of the classifica-
tion error, giving the letter label, and the RBF is re-trained (modification of the
existing kernels or addition of a new one).

Two other systems use a TDNN (7ime Delay Neural Network) as classifier
instead of the MLP. This TDNN is trained on an omni-writer database and the
output layer of this network is replaced either by a k-nn classifier in’ or by a
discriminating classifier in.® During the adaptation step, the TDNN is fixed and
the output classifier is trained, in order to learn mis-recognized characters.

The system described in? is very close to our system but is dedicated to
isolated alphanumeric character recognition. The k-nn classifier uses the Dy-
namic Time Warping algorithm to compare the unknown characters to a prototype
database. The writer adaptation consists in adding the mis-classified characters in
this database. Moreover, useless prototypes can be removed from the database to
avoid an excessive growth of this latter.

There are also a lot of works on adaptation in off-line character recognition
and other pattern recognition fields including speech recognition.!® For example,
in,!! the authors adapt the Hidden Markov Models (HMM) first trained on a large
database with a small database of the particular writer.

Based on the results of all these studies, we can notice that model-based clas-
sifier (MBC) like k-nn have better ability to learn particular patterns than machine
learning classifier (MLC) like HMM, MLP or GMM (Gaussian Mixture Model).
MBC need very few samples to learn a new pattern (sometime one sample is
enough) and, as this learning consists in adding the new sample in the classifier
database, they are not time consuming. But the database size tends to increase sig-
nificantly, so the classification time and the memory needed, increase linearly with
this size. On the other hand, MLC need more samples and are time consuming to
re-estimate their parameters. But after the training, the size and the classification
time remain the same.

10.3. Writer independent baseline system

For the experiments, we collected a large text database written by 38 different
writers. Each writer wrote an average of 150 words for a total of 5,400 words
and 26,000 letters. A human expert labeled all the texts. We present in this pa-
per some iterative adaptation strategies: the performances of the system improve
continuously with the amount of data. Thus, we will study the evolution of the
recognition rate on three ranges corresponding respectively to 50, 100 and 150
words used for the adaptation. Some other writers who have written less than 50
words are kept to constitute the text training database for the tuning of the writer
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independent system.'?

We use for adaptation a lexicon containing the 8,000 most frequent words of
the French language. Our system is also able to handle very large lexicons (some
200,000 words) as shown in the following. The complete analysis speed is about 6
words per second (P4 1,8GHz Matlab) and a small amount of memory is required
(about 500Ko including the system program, the 8K lexicon and the database).
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Fig. 10.1. Baseline system.

The writer independent baseline system is presented in figure 10.1. It is based
on the activation-verification cognitive model described by Paap in 1982.!> The
system consists of a set of three neural encoding experts'? that extract geometrical
and morphological informations in the input data (i.e. strokes)

The first expert gives informations about the shape of the strokes (size of
ascender and descender. .. ). We compare the bounding box of the stroke with the
estimated height and positioning of medium letters in the line.

The second expert gives us segmentation informations like between-letter,
within-letter and within-word separation between two consecutive strokes. The
input of the neural network is a 32 features vector composed of absolute and rel-
ative measurement of the two strokes. We use a forward backward sequential
selection (FBSS algorithm described in'#) to keep the most relevant features.

The last expert is the character classifier. It is a k£-nn classifier and it uses an
omni-writer prototype database. This database was created by using an automatic
clustering algorithm'® starting from the 60,000 samples of UNIPEN database'®
(corpus Train-R0O1/V07). This algorithm is well fitted to heterogeneous character
classes with highly variable densities. It overcomes the classical problems of clus-
tering (prototype optimal number, initialization ...). It works on labeled examples
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of a given class and try to optimize the within-class variance by combining two
stages: a sub-optimal unsupervised research of prototypes followed by an adap-
tation stage using vector quantization. After clustering, the prototype database
contains some 3,000 stroke prototypes for the 62 classes (26 upper-case letters,
26 lower-case letters and 10 digits). Each sample represents a given character al-
lograph (for single-stroke characters) or a part of the allograph (for multi-stroke
characters). An allograph is a specific handwriting feature. It includes on the
one hand characters with the same static representation (i.e. the same image) but
written with variable dynamics (number of strokes, senses, direction ...) and on
the other hand, the different handwriting model for a given character : cursive,
hand-printed, mixed ... When an unknown character has to be classified, it is
first divided into strokes. Then, each stroke is compared with a prototype subset
producing a distance vector. The distance of the unknown data to each charac-
ter class is the sum of all the distance vectors (over the number of strokes). The
nearest-neighbor criterion is then applied to find the winning class.

All these experts provide probabilistic information at the stroke level. For
each expert, we also compute a confusion matrix on the training data, in order
to evaluate prior probabilities. We use the Bayesian rule to re-estimate posterior
probabilities by combining this latter with prior knowledge. The segmentation
probabilities are used to construct the smallest and most relevant segmentation
tree of a line of text. The classifier probabilities are used to activate a list of
hypothetical words in the lexicon for each segmentation in the tree. A probabilistic
engine that combines all the available probabilities evaluates the likelihood of each
hypothetic word in this list. We call this information the probability of lexical
reliability (PLR). We used dynamic programming in the segmentation tree where
each node has a PLR in order to get the best re-transcription of the line.

We evaluate this lexicon driven recognizer on differently lexicon size on the
whole text database used for adaptation (figure 10.2, graph Omni). We also add
some allographes from the text database into the classifier prototype database to
turn the system into a multi-writer recognizer (figure 10.2, graph Multi). Even if
the recognition rate is not so high, we can notice the very good ability to manipu-
late very big lexicon. We loose less than 5 % of the recognition rate when we use a
187,000 words lexicon comparing with a 400 words lexicon (4675 times smaller).
Finally, we achieve a word error rate of 25 % in a writer-independent frame with
a 8,0000 words lexicon.
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10.4. Writer adaptation strategies

The baseline system recognition is writer-independent. Its prototype dataset (the
so-called WI database) should cover all the writing styles. Each prototype corre-
sponds to a particular shape of a whole letter (i.e. allograph). Experimental results
show that it covers at least the most common writing styles. We also remark that
storing character samples taken from the text database in the prototypes database
(multi-writer system) improves greatly the recognition rate. There are, at least,
two situations that reduce the recognition rate.

e Missing allograph: the allograph is missing in the prototype database and it
must be stored (added) in this set.

e Confusing allograph: for a given writer, the prototype is confusing or erro-
neous and it must be removed from the prototype database.

Model-based classifier can be adapted very easily and quickly to new writ-
ing styles, just by storing new character samples in the writer dependent (WD)
database (when these latter miss) and, if needed, by inactivating existing proto-
types (when they are confusing). The system specialization on a given user — by
registration of his personal features — makes it writer-dependent and increases its
accuracy. The comparison of classification hypothesis with either the labeled data
(supervised adaptation) or the lexical hypothesis (self-supervised adaptation) de-
tects classification errors. The misclassified characters can be stored in the writer-
dependent (WD) database, using the lexical hypothesis as a label.
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Fig. 10.2. Recognition rate vs lexicon size.
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10.4.1. Supervised adaptation

Before comparing the accuracy of self-supervised adaptation strategies, we start
by studying supervised technics. We use the labels of the text database and the
real text segmentation to carry out supervised adaptation. Note that when we
know the text segmentation, our writer-independent recognizer does not have to
build a segmentation tree and so the word error rate is about 5 %. The supervised
adaptation acts as follow. Characters of the text are classified one after the other.
The classification hypothesis (the best answer, top;, of the character classifier) is
compared with the label. If they do not match, the mis-recognized character is
stored in the user personal database (figure 10.3). We consider two approaches:
the text approach where the characters are added at the end of the analysis of the
text and the /ine approach where the characters are added at the end of the analysis
of each line. The results (table 10.1) show the improvement of the recognition
rate due to the writer adaptation of the handwriting recognition system when the
segmentation of the text in words and letters is known. We present the word error
rate (WER) after 50, 100, and 150 analyzed words.

de Ceconnatssance

lassification .
Classificatio te neconnaissar ce

hypothesis
Label de reconnaissance

Prototypes | ynipEN
database

Fig. 10.3.  Supervised addition of prototypes in the user database.

As we know the labels and the text segmentation (it is not realistic just an in-
teresting case study), we achieve an awesome word recognition rate of 99 % that
proves the necessity of applying adaptation strategies to recognition systems. The
WDDBS show the amount of prototypes added in the WD database regarding to
the WI database size. The line approach allows a faster improvement of the recog-
nition rate and adds fewer prototypes to the user database than the fext approach.
When we add characters after a full text analysis, we can add several similar pro-
totypes (and the average number of added prototypes increases). On the other
hand, the line approach, adds the first prototype of a mis-recognized character.
Thanks to this new sample, the following similar characters are correctly classi-
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Table 10.1.  Supervised adaptation: Word error rate WER and
WD database size WDDBS (known segmentation). min is the
result on the best writer, max is the result on the worst writer
and mean is the result on the overall text database (8k lexicon).

WER WDDBS
Words 50 100 150
Baseline system 5 % 100 %
Text appr.: min 0% 0% 0% +3 %

mean | 13% | 1.1% | 0.6% +6 %

max 10 % 51% | 45% +9 %

Line Appr.: min 0% 0 % 0% +2 %
mean | 1.1% | 0.7 % | 0.4 % +4 %

max | 62% | 52% | 3.7 % +8 %

fied, so they do not need to be stored in the prototypes database. So, the number
of added prototypes is smaller in the /ine approach than in the text approach and
we select the first strategy for the following works. Due to the architecture of the
recognition system, it is not possible to study a word approach, where we made
the adaptation after each analyzed words. It seems logical to think that a word
approach should perform better than the /ine approach but the difference should
not be enough to change completely the results obtained with the line approach.

From a perceptive point of view, the prototype storing imitates — at the letter
level — the priming repetition effect noticed at the word level: the initial pre-
sentation of a word reduces the amount of information necessary to its future
identification and this identification is performed faster. Nevertheless, activating
WD prototypes is not sufficient to perform perfect classification, even with a great
amount of labeled data. Some added characters will generate mis-classification
and new errors will appear. It seems necessary to inactivate — or even delete —
some WI prototypes.

10.4.2. Self-supervised adaptation

In self-supervised adaptation, we use the recognizer in a real framework, i.e. the
data labels and the text segmentation are not known (our reference system achieve
a word error rate of 25 % on a 8,000 words lexicon, see figure 10.2). More-
over, self-supervised adaptation must be completely hidden to the writer which
should not be solicited by the system. Now, the classifier hypothesis and the lex-
ical hypothesis are compared to find which prototypes must be stored in the user
database.
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Fig. 10.4.  Self-Supervised adaptation method. Addition of prototypes in the user database.

10.4.2.1. Systematical activation (SA)

In the systematical activation strategy, we consider that the lexical analyzer is
“perfect”. Therefore, when an error (difference between the classification hypoth-
esis and the lexical hypothesis) occurs, the corresponding character is stored in the
user personal database. Due to the lexical analyzer errors cumulated with the seg-
mentation errors, some prototypes are stored in bad classes (figure 10.4). These
errors introduce many new classification errors. The performances of the recog-
nition system after adaptation is just a little bit better than those of the baseline
system (table 10.2).

10.4.2.2. Conditional activation (CA)

As the previous strategy is not really accurate, it seems necessary to study the
behavior of the lexical analyzer in order to store only useful prototypes. We saw
that the recognition engine estimates for each word a probability of lexical re-
liability (PLR, section 10.3). This PLR reflects the probability of error of the
lexical analyzer for this word. The conditional activation strategy is described in
the following. If, for a given word, the PLR is greater than « (i.e. we have good
confidence in this word), then the mis-classified characters of this word are added
to the user database. We determined the o parameter on the text training database
by minimizing the Bayesian error between the PLR distributions of well-corrected
words and words which were not well corrected by lexical analysis. We obtained
an « of 0.015 and we show in table 10.2 the result of the conditional activation.

The CA strategy is more accurate than the SA strategy as it reduces consider-
ably the false additions of prototypes (see the small growth of the user database).
Moreover, with the CA strategy the error rate decreases continuously over the
time. After 150 words of adaptation, the error rate decreases of about 8 %.
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Table 10.2.  Systematic and conditional activation: Word error
rate WER and WD database size WDDBS (8k lexicon).

WER WDDBS
Words | 50 100 [ 150
Baseline system 25 % 100 %

SA strategy: min 0 % 1.9 % 2 % +2 %
mean | 25 % 23 % 23 % +6 %

max | 53% | 3% | 51 % +14 %

CA strategy: min 0 % 0 % 2% +1 %
mean | 22% | 20% | 17 % +2 %

max | 71 % 58 % 43 % +3 %

10.4.2.3. Dynamic management (DM)

This method has two goals. As seen previously, using lexical hypothesis as a ref-
erence may add confusing or erroneous prototypes, even when conditional acti-
vation is applied. Dynamic management is used to recover from those prototypes
that contribute more often to incorrect than correct classifications. Inactivation
methods are also used to prune the prototype set and speed-up the classification.”
Each prototype (of the WI database as of the WD database) has an initial ade-
quacy (Qo = 1000). This adequacy is modified during the recognition of the
text according to the usefulness of the prototype in the classification process, by
comparing the classification hypothesis and the lexical hypothesis. Let us con-
sider the prototype ¢ of the class 7, three parameters are necessary for the dynamic
management:

e G : Rewards (+) the prototype ¢ when it performs Good classification (classi-
fication and lexical hypotheses are the same).

e M : Penalizes (-) the prototype ¢ when it performs Mis-classification (classi-
fication and lexical hypotheses are different).

e U : Penalizes (-) for all the Useless prototypes of the class j.

The three parameters act differently. The U parameter is used to reduce the
adequacy of the useless prototypes for a given writer. As the baseline recognizer
is writer-independent, it needs many prototypes (an average of 40 prototypes per
class) to model a character class but only a few ones will be useful for a given
user. This parameter eliminates the prototypes that are not used during a long
time. The value of U defines this life “time”. The M parameter is used to penalize
strongly erroneous prototypes. The value of this parameter must be bigger than
the value of U because erroneous prototypes are much more troublesome than
useless prototypes. By preserving only these two parameters, all the prototypes
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should disappear. Thus, it is necessary to reward good prototypes. To achieve
it, the GG parameter is used to increase the adequacy of any prototype activated
during the classification and validated by the lexical analyzer. The equation (10.1)
describes the evolution of the prototype adequacy. Where I is the frequency of
the class j in the French language. These three parameters are mutually exclusive
i.e. on each occurrence, only one parameter is activated. When Qé- = 0, the
prototype is removed from the database. If these parameters are finely tuned, the
system should inactivate quickly erroneous prototypes while preserving only the
useful writer prototypes. After an exhaustive search of the parameters (G, M, U)
the optimal triplet is (30, 200, 8) and does not depend of the lexicon size used
for the lexical analysis. Moreover, we can change their values by 20 % without
changing the results. A complete analysis of these three parameters can be found
on.'

Qj(n+1) = Qj(n) +[G(n) — M(n) — U(n)]/F; (10.1)

The dynamic management combined with the conditional activation strategy
is very efficient as it greatly reduces the size of the database while preserving the
recognition rate of the conditional activation strategy (table 10.3). Even with a
very large lexicon of more than 187,000 words, this self-supervised adaptation
technique is very accurate and allows us to increase the recognition rate of about
7 %.

Table 10.3. Dynamic management: Word error rate WER
and WD database size¢ WDDBS after 150 adaptation words
for two different lexicon sizes.

WER WDDBS
8k words | 187k words
Baseline system 25 % 28 % 100 %
DM strategy 17 % 21 % -80 %
. . 17 . Fobr
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Fig. 10.5. Best recognition rate writer (99 %) and worst writer (70 %).

Now, let us focus on the evolution of the adequacy of some prototypes (figure
10.6). For some writers, the WI prototypes are sufficient. For the class ‘a’, 2
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prototypes are used and thus the adequacy of the 45 others decreases. For the
class ‘s’, 4 prototypes are useful (the writer has probably an unstable writing, see
figure 10.5) and the 36 others are inactivated. For another writer (class ‘s’ and
‘e”), WD prototypes (in bold) are necessary. For the class ’s’, at the beginning, a
WI prototype is used and after some 15 occurrences, a WD prototype is added (the
writer gets familiar with the handheld device and the pen). Another WD prototype
is stored after some 35 occurrences (the user writes faster perhaps and changes his
way of writing). After 150 adaptation words, the size of the prototype database
was reduced by 80 %.

Classe a: 47 protos Classe s: 36 protos
3000 3000
a- >
$ 2000 & 2000
3 3
o o
] S
© 1000 % 1000
0 0
0 10 20 0 100
occurence occurence
Classe s: 38 protos Classe e: 45 protos
3000 3000
Iy 3
$ 2000 T 2000
o o
L5 (3]
kS ®
1000 1000 < ~~——
0 0
0 20 40 0 50 100
occurence occurence

Fig. 10.6. Prototypes adequacy evolution vs. occurrence. Thin lines are WI prototypes and bold lines
are WD prototypes.

10.5. Supervised / self-supervised combination

We can simulate a perfect adaptation strategy if we use the prototype database
determined in a supervised way in paragraph 10.4.1 in the reference system with-
out knowing the text segmentation. In this case, the word error rate after 150
words of CA adaptation reaches 12 %. We just saw that the performances of the
recognizer with a self-supervised CA adaptation are not far from the perfect adap-
tation (17 % against 12 %). It seems interesting to introduce some labelled data
(i.e. soliciting the user to enter the real word) in the self-supervised adaptation
scheme to achieve better results. So, it becomes a combination of supervised and
self-supervised adaptation called semi-supervised strategy.
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Soliciting the user for writing 150 words is much too constraining. On the
other hand, asking him (her) to write some words is acceptable, especially if the
recognition rate is largely improved. This last combination consists in carrying
out a supervised adaptation of the system on some known words and then uses the
self-supervised dynamic management adaptation strategy (table 10.4). Asking the
user to write a sentence of 30 words decreases the error rate to 10 % which is even
better than supervised adaptation performed alone (12 %)! We guess these very
interesting results are due to the fact that, in supervised adaptation, we do not use
the dynamic management of the prototypes.

Table 10.4. Word error rate (WER) in semi-supervised adaptation

Words for supervised adapt. WER
After supervised adapt. | After 100 words more (DM)
0 25 % 20 %
10 24 % 17 %
20 24 % 12 %
30 24 % 10 %
50 23 % 9 %

10.6. Conclusions & Future works

In this paper, we have shown that model-based classifiers are easy to adapt.
Thanks to their structure, they can learn new writings styles, by activating new
prototypes and inactivating erroneous ones. We first present a supervised adapta-
tion strategy. It is very accurate but not user-friendly as it needs to be supervised
by the writer. Then we try to hide the adaptation process and present several
self-supervised strategies. The conditional activation scheme is the more accurate
as it focuses on reliable words alone. The prototype dynamic management in-
creases both recognition rate (from 75 % to 83 %) and classification speed (close
to twice). This process automatically transforms a writer-independent database
into a writer-dependent database of very high quality and compactness. Finally,
combining supervised and self-supervised improves again the system accuracy
(more than 90

It would be interesting to evaluate a semi-supervised strategy where the user
is solicited only in the ambiguous cases. We have also to adapt the parameters of
the segmentation expert, which actually is the biggest source of error.
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The motivation of this work is based on two key observations. First, the
classification algorithms can be separated into two main categories:
discriminative and model-based approaches. Second, two types of
patterns can generate problems: ambiguous patterns and outliers.
While, the first approach tries to minimize the first type of error, but
cannot deal effectively with outliers, the second approach, which is
based on the development of a model for each class, make the outlier
detection possible, but are not sufficiently discriminant. Thus, we
propose to combine these two different approaches in a modular two-
stage classification system embedded in a probabilistic framework. In
the first stage we estimate the posterior probabilities with a model-
based approach and we re-estimate only the highest probabilities with
appropriate Support Vector Classifiers (SVC) in the second stage.
Another advantage of this combination is to reduce the principal burden
of SVC, the processing time necessary to make a decision and to open
the way to use SVC in classification problem with a large number of
classes. Finally, the first experiments on the benchmark database
MNIST have shown that our dynamic classification process allows
to maintain the accuracy of SVCs, while decreasing complexity by a
factor 8.7 and making the outlier rejection available.
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1. Introduction

The principal objective of a pattern recognition system is to minimize
classification errors. However, another important factor is the capability
to estimate a confidence measure in the decision made by the system.
Indeed, this type of measure is essential to be able to make no decision
when the result of classification is uncertain. From this point of view, it
is necessary to distinguish two categories of problematic patterns. The
first one relates to ambiguous data which may cause confusion between
several classes and the second category consists of data not belonging to
any class: the outliers.

Furthermore, most classification algorithms can be divided into two
main categories denoted as discriminative and model-based approaches.
The former tries to split the feature space into several regions by decision
surfaces, whereas the latter is based on the development of a model for
each class along with a similarity measure between each of these models
and the unknown pattern (see Fig. 1). Different terms are used in
literature to refer it, generative method”, density model'®, approach by
modeling” or model-based classifier*".

(a) discriminative (b) model-based

Figure 1. Two types of classification approaches.

Thus, as is shown by Liu et al.'®, the discriminative classifiers are
more accurate in classifying ambiguous data, but not suitable for outlier
detection, whereas model-based approaches are able to reject outliers but
not effective in classifying ambiguous patterns. Considering this, the
authors propose to hybridize the two types of approaches internally or to
combine them externally. In a more recent paper'’, the same authors have
tested an internal fusion of the two approaches. Their method improves
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the accuracy of the model-based approach by using discriminative
learning. However, even though their classifier is more accurate, it is not
as accurate as the best discriminative approaches such as support vector
classifiers.

Hence, in this paper, we propose to combine a model-based approach
with support vector classifier (SVC). This classification system should
give high accuracy and strong outlier resistance. The idea is to develop a
two-stage classification system. At the first stage, a model-based
approach can directly classify patterns that are recognized with high
confidence, reject outliers or insulate those classes in conflict. Then, if
conflict is detected, the appropriate SVCs will make better decision at the
second stage. Another advantage of this combination is to reduce the
main burden of SVC: the processing time necessary to make a decision.

Thus, the proposed system is a multiple classifiers combination,
which is a widely studied domain in classification.**'>'*!* Although a
number of similar ideas related to two-stage classification to treat
ambiguity were introduced in recent papers,'”**'**** our classification
system remains different and original. Indeed, the idea of multiple
classifiers combination to treat ambiguity is presented by Gunes et al.,®
but the proposed system combine only different model-based classifiers
and is only tested on 2D artificial data. On the other hand, the
combination of model-based and discriminative approaches is proposed
by several authors®®'** but their motivations are different. In the
approach proposed by Francesconi et al.,’ the model-based approach is
used in a second stage to slightly improve the rejection capability of the
MLP used at the first stage. Prevost et al.*' use only a few MLPs to
improve the accuracy of the first classifier, which used a reduced number
of prototypes. Ragot & Anquetil”® use fuzzy decision trees to improve
significantly a first system based on fuzzy clustering, but their
combination is not as accurate as SVC. Concerning the use of SVCs in a
second stage of classification to improve the accuracy two different
approaches are proposed.'”* Bellili ez al.' take into account the problem
of complexity of SVCs, but in the first-stage they use MLP which is
another discriminative approach. Furthermore, their system does not
make decisions at the first-stage and always uses one SVC, and never
more than one, which limits the performance of the system. Vuurpijl et
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al® propose several elaborate strategies for detecting conflicts.
However, they do not take into account the problem of complexity.
Indeed, the first-stage uses a complex ensemble of classifiers. Moreover,
the results of their two-stage system are not compared to a full SVCs
system. Thus, if the use of SVCs can improve the accuracy of the
ensemble of classifier used in the first stage, would it then be better to
use a full SVCs system?

Moreover, we embed our system within a probabilistic framework,
because as mentioned by Platt: “The output of a classifier should be a
calibrated posterior probability to enable post-processing”.*’ Indeed, this
type of confidence measure is essential in many application, when the
classifier only contributes a small part of the final decision or if it is
preferable to make no decision when the result of classification is
uncertain. So, in the first stage, we estimate the probabilities with a
model-based approach and re-estimate only the highest probabilities with
appropriate SVCs in the second stage. Thus, to compare the quality of
the probabilities estimate by the different methods, we use the Chow’s
rule to evaluate their error-reject tradeoff. Indeed, as it is shown by
Fumera et al..° this rule provides the optimal error-reject tradeoff only if
the posterior probabilities of the data classes are exactly known. But, in
real applications, such probabilities are affected by significant estimate
errors. In consequence, the better the probabilities estimate is, the better
the error-reject tradeoff is.

This paper is organized as follows: Section 2 presents the model-
based approach, while the section 3 presents its combination with
discriminative approach. Section 4 summarizes our experimental results
and the last section concludes with some perspectives.

2. Model-based approach

One of the main advantages of this type of approach is the modularity.
Indeed the training process is computationally cheap because the model
of each class is learned independently. Thus, it is well scalable to large
category problems such as Chinese character recognition.'” On the other
hand, this also facilitates the increment/decrement of categories without
re-training all categories.
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2.1. Characterization of the pattern recognition problem

Although this type of approach is not very discriminant, it can be used to
characterize the problem of pattern recognition. Thus, three cases can be
considered during testing:

e A single similarity measure is significant. The pattern can be directly
classified.

e Several similarity measures are comparable. It is an ambiguous
pattern and it is better to use a discriminative approach to make
decision.

e All similarity measures are unsignificant. The pattern can be
considered as an outlier.

An artificial toy example with only 2 features is presented in Fig. 2 to
show how this type of classifier is able to detect outliers and ambiguous
patterns. The ideal similarity measure of each class is represented by
level line in (a) and (b). Thus, we can see that it is possible to use it to
make new interesting measures. Indeed, in this simple example with two
classes, the maximum of the two similarity measures shown in (c) can be
used to detect outlier, whereas the minimum shown in (d) can be used to
detect conflict.
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(c) max(m; , my) (d) min(m; , my)

Figure 2. Use of model-based approach to detect outliers (c¢) and ambiguous patterns (d).

2.2. Modeling data with hyperplanes

To start, we make the assumption that each class is composed of a single
cluster in the feature space and that data distributions are Gaussian in
nature. Then, a classical Bayesian approach consists to use parametric
methods to model each class statistically based on data means and
covariance, which can be used in quadratic discriminant functions to
make decision. But, Kimura ef al.'* showed that quadratic discriminant
functions are very sensitive to the estimation error of the covariance
matrix. Thus, in many applications with a large number of features, it is
preferable to regularize the covariance matrix. Another improvement
proposed by Kimura et al.'? is to neglect the nondominant eigenvectors,
because the estimation errors in the nondominant eigenvectors are much
greater than those of the dominant eigenvectors.
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With the same idea, it is possible to model each class @; with a
hyperplane defined by the mean vector y;, and the matrix ‘I’ which
contains the k first eigenvectors ¢ extracted from the covariance matrix
DI ;- Then, the measure of the s1m11ar1ty (or dissimilarity) used is the
projection distance on the hyperplane:

d, () =x— 1, - (1)

Thus, given a data point x of the feature space, the membership to the
class @, can be evaluated by the square of the Euclidean distance d ;
from the point x to its projection on the hyperplane:

fi(x0) = (- H; )‘*’j )‘*’/‘T tH )

Finally, it is possible to reformulate the projection distance to reduce
the complexity of calculation:

dmwme—&xmw} ©

The Fig. 3 shows a simple example of projection distance, where
each class is modeled by its principal axis (k= 1) and the data point x is
projected on f; (x) and /> (x).

/ 7

Figure 3. 2D example of projection distance.
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Although it would be preferable to bound the hyperplanes with the
intention to close the decision surface, when the feature space is very
large and bounded, it seems that the probability that a pattern is far away
from the training data and close to the hyperplane is very low. Thus,
Kimura e al.'' showed that the accuracy obtained by the projection
distance method is very close to the accuracy of a three layer
autoassociative neural networks with sigmoid function on the hidden
layer, which guaranties to close the decision surface.’

Furthermore, this method requires the optimization of only one
parameter: the number k of eigenvectors used. But, as we can see in
section 4.1, this parameter is crucial for classification. Thus, if & is too
small, the models are not precise so we loose too much information. In
fact, while £ = 0, each class is model by a simple prototype that is the
mean vector 4 of training data. On the other hand, if the value of & is
too large, the models are not discriminative. At worst, if k = d, where d is
the dimension of the input pattern, the hyperplane embeds all the points
of the feature space. Hence, for all point x, the projection distance will be
null.

2.3. Estimate posterior probability

Thus, if the processed pattern is not an outlier, we can estimate posterior
probability in the first stage of our system. Then, if we suppose that the
distribution of the projection distances between the margins is
exponential, we can use the softmax function to map projection distance
to posterior probability:

B (@, |9 =24 )

Y exp(—ad,(x))

j=1
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3. Combination with discriminative approach

Thereafter, if a pattern is considered as ambiguous in the first stage of
our system, we use appropriate discriminative experts to re-estimate only
the most significant posterior probabilities in the second stage.

3.1. Conflict detection

The first step is to detect the patterns that may cause confusion. Bellili et
al.' and Prevost et al.* consider that conflict involves only two classes
and they use appropriate experts, to reprocess all samples,' or just the
samples rejected by the first classifier.’’ However, we consider that
conflict may involve more than two classes. Hence, it is preferable to use
a dynamic number of classes in conflict. With this intention, we
determine the list of p classes {®,),...,®,,,} of which the posterior
probabilities estimated in the first stage are higher than a threshold e.
Thus, /() is the index of the j th class that verifies:

P(w,,|x)>e. 5)

Then, if p is superior to one, we use in the second stage the
appropriate  discriminative expert to re-estimate the posterior
probabilities of the p classes. Finally, this parameter controls the
tolerance level of the first stage of classification and consequently the
classifying cost. Indeed, the smaller the threshold ¢ is, the larger the
number p will tend to be. If ¢ is too large, then we never use the second
stage of classification. But, if £ is too small, then the system uses
unnecessary discriminative classifiers.

3.2. Use of Support Vector Classifiers

A recent benchmarking of state-of-the-art techniques for handwritten
digit recognition'’ has shown that Support Vector Classifier (SVC) gives
higher accuracy than classical neural classifiers like Multi Layer
Perceptron (MLP) or Radial Basis Function (RBF) networks. However,
thanks to the improvement of the computing power and the development
of new learning algorithms, it is now possible to train SVC in real world



190 J. Milgram, R. Sabourin and M. Cheriet

applications. Thus, we choose to use SVC in the second stage of our
system. Also, if an SVC can possibly make good decisions, these output
values are uncalibrated. But, a simple solution is proposed by Platt® to
map the SVC outputs into posterior probabilities. Given a training set of
instance-label pairs {(x,,y,):k=L....,n}, where y, € {1,—1} and
X, € R, the unthresholded output of an SVC is

f) =2y K(x.0+ b, )
k=1
where the samples with non-zero Lagrange multiplier a; are called
support vectors (SVs).
Since the class-conditional between the margins are apparently
exponential the authors suggest to fit an additional sigmoid function
(Equ. 7) to estimate probabilities.

1
1+ exp(af(x)+b)

P(y=1]x) 7

The parameter a and b are derived by minimizing the negative log
likelihood of the training data, which is a cross-entropy function:

_i(rk log(P(y, =11x))+(-1p)log(1- POy, =11x))) . (8)

.+l

where 1, = Y denotes the probability target.

Then, to solve this optimization problem, the author uses a model-
trust minimization algorithm based on the Levenberg-Marquardt
algorithm. But, in a recent note'’ it is shown that there are two problems
in the pseudo-code provided by Platt.”® One is the calculation of the
objective value, and the other is the implementation of the optimization
algorithm. Therefore, the authors propose another minimization
algorithm more reliable, based on a simple Newton’s method with
backtracking line search. Thus, we use this second algorithm to fit
additional sigmoid function and estimate posterior probabilities.

Furthermore, SVC is a binary classifier, so it is necessary to combine
several SVCs to solve a multi-class problem. A most classical method is



Application to Isolated Handwritten Digit Recognition 191

the “one against all” strategy in which one SVC per class is constructed.
Each classifier is trained to distinguish the examples in a single class
from the examples in all remaining classes. Although this strategy is very
accurate, it seems better to use in the second stage of our system a
“pairwise coupling” approach, which consists to construct a classifier for
each pair of classes. Indeed, this strategy is more modular and as
reported by Chang & Lin,” although we have to train as many as c(c-1)/2
classifiers, as each problem is easier, the total training time of “pairwise
coupling” may not be more than that of the “one against all” method.
Furthermore, if we use “one against all” SVCs in the second stage, we
are obliged to calculate the distances of a large number of SVs belonging
to the implausible classes, which increases the classifying cost. Thus, we
choose to use a “pairwise coupling” approach and we apply the
“Resemblance Model” proposed by Hamamura et al.'’ to combine
posterior probability of each pairwise classifier into posterior probability
of multi-class classifier. Then, since prior probabilities are all the same,
posterior probabilities can be estimated by

I1 f’(a)j |xew, ;)
P(w,|x)=—1= . ©)

211 f’(wj,, |x€ ;)

jU=1 e

where @; denotes the union of classes op and ;.

3.3. Re-estimate posterior probabilities

Finally, as we can see in Fig. 4, we use only p(p-1)/2 SVCs to re-
estimate only the most significant posterior probabilities. In
consequence, the final probabilities are not homogeneous, since they can
be estimated by different approaches. However, it is not an important
drawback. Indeed, when p is superior to one, the first stage estimates
only the smallest probabilities, which are negligible, and in this case the
second stage estimates all the remaining probabilities. These p significant
probabilities are obtained by
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HCOMBE PR N 1= D P (@, | X)
j'=p+1
Z HP (@4 | X € @y 1) o
1 j"=

J'=

b
HP @y jy |xe Dy j), f(J“>) ¢ } (10)

where the first term is related to the second stage, while the second term
is related to the first stage. The objective of this second term is to
maintain the sum of all the probabilities equal to one.

model of P Vs R
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Figure 4. Overview of our two-stage classification system.

4. Experimental results

To evaluate our method, we chose a classical pattern recognition
problem: isolated handwritten digit recognition. Thus, in our
experiments, we used a well-known benchmark database. The MNIST
(Modified NIST) dataset” was extracted from the NIST special database
SD3 and SD7. The original binary images were normalized into 20x20
grey-scale images with aspect ratio preserved and the normalized images

* available at http://yann.lecun.com/exdb/mnist/
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were centered by center of mass in 28x28 images. Some sample images
of this database are shown in Fig. 5.
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Figure 5. Sample images of MNIST dataset.
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The learning dataset contains 60,000 samples and 10,000 others are
used for testing. Moreover, we have divided the learning database into
two subsets. The first 50,000 samples have been used for training and the
next 10,000 for validation. Finally, the number of samples per class for
each subset is reported in the Table 1.

Table 1. Number of samples per class in the three subset of the MNIST database.

© ()] 3 W4 (O] g ©7 g 9 ()

training 4932 | 5678 | 4968 | 5101 | 4859 | 4506 | 4951 | 5175 | 4842 | 4988

validation 991 | 1064 | 990 | 1030 | 983 | 915 | 967 | 1090 | 1009 | 961
test 980 | 1135| 1032 | 1010 | 982 | 892 | 958 | 1028 | 974 | 1009

Several papers dealt with the MNIST database. The best result
mentioned in the original paper'® is obtained by the convolutional neural
network LeNet-5 (0.95% of error rate on the test dataset). More recently,
a benchmarking of state-of-the-art techniques'® has shown that SVC with
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8-direction gradient features gives the highest accuracy reported at this
day (0.42% of error rate on the test dataset). A short summary of results
obtained by Liu et al." is reported in Table 2.

Table 2. Error rate on the MNIST test dataset reported by Liu ez al." with
state-of-the-art techniques.

k-NN LVQ RBF MLP SvC

without feature extraction 3.66 % 2.79 % 2.53 % 191 % 1.41 %

with feature extraction 097% | 1.05% | 0.69% | 0.60% | 0.42 %

Although, feature extraction allows a better accuracy, we chose to use
the original database to make the proof of concept of our modular two-
stage combination.

4.1. Model-based approach

Initially, we must fix the dimensionality of the hyperplane models. For
this purpose, we chose to use the same value of k& for all hyperplanes,
because it is not trivial to find the optimal values of each hyperplane.
Furthermore, we think that it is not a problem to use a suboptimal
solution because the second stage is here to refine classification. Finally,
we use the validation dataset to find the better value of k£ and we can see
in Fig. 6 that this parameter strongly influences the accuracy of the
classification. Consequently, we use £ = 25 and we obtain an error rate of
4.09 % on the test dataset. For comparison, we obtain an error rate of
7.06 % with the quadratic discriminant function. Indeed, because the data
have many singular directions, we are forced to add an important
constant (A = 0.4).
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Figure 6. Effect of the dimensionality of the hyperplane models.

Thereafter, the a parameter of the softmax function (Equ. 4) is chosen
to minimize the cross entropy error on the validation dataset. We obtain
the best result with a = 5.6. We can notice in Fig. 7 that the use of the
softmax function improves significantly the error-reject tradeoff of the

model-based and that half of the examples with the highest confidence
levels are correctly classified.
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Figure 7. Error-reject tradeoff of the model-based approach on the validation dataset.

Finally, even though the reliability of the proposed model-based
approach is not very high, it should be able to characterize the pattern
recognition problem. Indeed, as we can see below, the three cases
considered in section 2.1 can be observed in real application like isolated
digit recognition:

e A single projection distance is very small. The pattern can be
considered as unambiguous and the posterior probabilities can be
directly estimated (see Fig. 8).

e Several projection distances are small. The pattern can be considered
as ambiguous and it is preferable to re-estimate the posterior
probabilities with the discriminative approach (see Fig. 13).

e All projection distances are high. The pattern can be considered as
outlier and can be rejected (see Fig. 9).
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Figure 8. Example of unambiguous pattern (8,400th sample of the test dataset).
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Figure 9. Example of outlier (generated with the 12th and 13th sample of the test dataset).

4.2. Support Vector Classifiers

The training and testing of all SVCs are performed with the LIBSVM
software’ We wuse the C-SVC with a Gaussian kernel
K (xk,x)z exp(—}/”xk — x”z). The penalty parameter C and the kernel
parameter y are empirically optimized by trial and error. Then, we have
chosen parameters that minimize the error rate on the validation dataset.
Finally, we used C = 10 and y = 0.0185 and we obtain an error rate of
1.48 % on the test dataset, which is comparable with those reported by
Liu et al."”’ when no discriminative features are extracted. Moreover, as
we can see in Fig. 10 the SVCs estimate better probabilities than model-
based approach.
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Figure 10. Error-reject tradeoff of Support Vector Classifiers on validation dataset.

On the other hand, we adopt the number of kernel evaluation per
pattern (KEPP) as a measure for the classifying cost, since it is the main
cause of the computation effort during the test phase. Thus, our ensemble
of 45 SVCs requires 11,118 KEPPs to make decision.

4.3. Two-stage classification system

As we can see on Table 3, after the first stage of classification the label
of the data is not always in the first two classes, which justifies the
choice of a dynamic number of classes in conflict.

Table 3. Ranking distibution of the label obtained with the model-based approach on
the validation dataset.

ranking of the label

1

2

>3

% of the dataset

96.18

2.50

0.76

0.56

According to the application constraints, it is necessary to make a
compromise between accuracy and complexity. The threshold £ of Equ. 5
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controls this tradeoff. Then, the validation dataset can be used to fix this
parameter according to the constraints fixed by the application.

error rate (%)

£=10" £=10*
1,53 . o .
0 500 1000 1500 2000 2500 3000

kernel evaluation per pattern

Figure 11. Accuracy-complexity tradeoff on the validation dataset.

As we can see in Fig. 11, while using a threshold of 107, it is possible
to obtain exactly the same error rate of 1.53% than with the full
“pairwise coupling” ensemble. Moreover, the use of a smaller threshold

(¢ =10") allows a slightly better error-reject tradeoff (see Fig. 12), but
the number of KEPP is multiplied by two.
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Figure 12. Error-reject tradoff of our two-stage classification system on the validation
dataset.

For this reason, we fix the tolerance threshold ¢ at 10~, which seems a
good tradeoff between accuracy and complexity. The Fig. 13 shows an
example of ambiguous pattern. We can see in dark the posterior
probability efficiently re-estimated by the second stage. Thus, if we had
used & = 10™, we would have obtained for this example a number p =7
of classes in conflict and we would have used 21 SVCs to re-estimate
posterior probabilities.

f,l
S /) ] 2 q /1; ’a > q (’~ q

class: @, @ @3 4 @5 @5 @7 g @ @10
Lij(l')i 4.9319 53658 4.8692 4.8020 3.2414 5.1457 54457 3.5028 47798 3.4728
f’f(mJ [x): 0.0001 0.0000 0.0001 0.0001 0.6641 0.0000 0.0000 0.1537 0.0001 0.1818

];’S(m_/\,\‘): 0.0001  0.0000 0.0001 0.0001 ©0.0000 0.0000 0.0000 0.9967 0.0001 0.0029

Figure 13. Example of ambiguous pattern (5,907th sample of the test dataset).
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Also, while the number p of SVCs used is dynamic, it is interesting to
observe the distribution of p (Fig. 15). Hence, we can see that with our
threshold of 107, the half of the examples are processed without SVC,
which confirms the previous remark related to Fig. 7.

Finally, our two-stage system uses a mean of 1,120.1 KEPP and
obtained on the test dataset an error rate of 1.50 %, which is comparable
to the result of the full “pairwise coupling” ensemble (1.48 %). The
analysis of these 150 errors reported in Fig.14, shows that only one error
is due to the first stage, which classify directly 4,890 test samples.

7] [4] (21 (3] B3 (] [&] (2] (2] ] (8] [8) [4] [7] [a]
(5] (<] (=] (] [5) (2] [¢] 3] (4] [4] (3] [5] [=] 9] [£]
S] (7] (1) (71 (41 (8] [5] [7] (] [5] [3] 3 [=] [¢] [
(1] (0] [3] (U] (5] [#) (4] (2] [ed [] [1] [¥] (@] [2] (5
2] (2] [U (%] [o] 3] [3] [3] [1] [3] [5] [3] (8] [A] [
%] (8] [o] (3] [5] [l [2] [] [€] (@] [4] [5] [=] 3] [2]
=) (1] (1) (] (=) 3] B (1) (2] (2] [a] [2] [#] 4] [
3] [t [2] [a] [a] (3] [2] [4] (2] [3] (3] [2] (5] [7] [o]
) (4] 2] (£ [3) [] 2] (8] (4] (8] [2] (2] [ (2] [a]
2l (7] 121 2] (4] 4] <] (9] 4] (2] 7] [4] [2] 2] (3]
Figure 14. The 150 errors obtained on the test dataset (label - > decision).

Moreover, as we can see in Fig.15, it is necessary to use more than
one SVC to resolve conflict. This fact shows that the first level is not
effective enough.
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100 T
I --10'
[/ =107

& [ &=10% [
[ ] e=10*

50

25

% of the validation dataset

lHHH -HHH HGHH 7 P s R .

1 3 10 15 21 28 36 45
number of SVCs used

Figure 15. Distribution of the number p of SVCs used to classify the validation dataset.

5. Conclusions and perspectives

We have presented a new classification architecture that has several
interesting properties for application to pattern recognition. It combines
the advantages of a model-based classifier, in particular modularity and
efficient rejection of outliers, with the high accuracy of SVC. Moreover,
it greatly reduces the decision time related to the SVC, which is very
important in the majority of real pattern recognition systems.

The results on the MNIST database show that the use of the first stage
to estimate probabilities allows to reduce the classifying cost by a factor
8.7, while preserving the accuracy of the full “pairwise coupling”
ensemble (see Table 4). Indeed, if we express the computational
complexity in number of floating point operations (FLOPs), a kernel
evaluation requires 2,355 FLOPs and a projection distance evaluation
requires 81,510 FLOPs. Thus, the computational cost necessary to
classify a pattern is approximately 26.2 MFLOPs with the full “pairwise
coupling” ensemble, only 0.4 MFLOPs with the model-based approach
and an average of 3.0 MFLOPs with our dynamic two-stage process.
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Table 4. Error-reject tradeoff of the three approaches on the test dataset.

error rate (%) 0.5 0.4 0.3 0.2 0.1
g model-based approach 12.68 13.74 16.97 20.01 28.59
ié our two-stage system 3.31 3.99 4.94 6.57 9.85
'g—‘ full “pairwise coupling” 3.29 4.00 5.13 6.34 9.55

Furthermore, while this implementation is only a proof of concept,
several aspects can be improved in future works. Indeed, the model-
based approach used in the first stage is not accurate. Thus, the use of a
mixture of hyperplanes to model each class instead of one single
hyperplane per class should improve significantly the accuracy of the
first stage. Then, it will be interesting to test the capability of model-
based approach to reject outliers. With this intention, we propose to
generate a database of artificial outliers like “touching digit” shown in
Fig. 9.

In addition, to improve the generalization performance, as shown by
Liu et al.,"” it is preferable to extract discriminative features. For
example, 8-direction gradient features allows to reduce the error-rate to
only 0.4 %. On the other hand, it will be interesting to train local SVC
only with training data rejected by the first stage.

To conclude, the modularity of the proposed architecture open the
way to use SVC to resolve classification problems with a large number
of classes. Indeed, we can use the first stage, which are suited for this
type of problems, to evaluate the possible conflict and we construct only
the appropriate SVCs.
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CHAPTER 12

LEARNING MODEL STRUCTURE FROM DATA: AN
APPLICATION TO ON-LINE HANDWRITING

Henri Binsztok and Thierry Artieres
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104, av du Président Kennedy
75016 Paris, France

We present a learning strategy for Hidden Markov Models that may be used to
cluster handwriting sequences or to learn a character model by identifying its
main writing styles. Our approach aims at learning both the structure and pa-
rameters of a Hidden Markov Model (HMM) from the data. A byproduct of
this learning strategy is the ability to cluster signals and identify allograph. We
provide experimental results on artificial data that demonstrate the possibility
to learn from data HMM parameters and topology. For a given topology, our
approach outperforms in some cases that we identify standard Maximum Like-
lihood learning scheme. We also apply our unsupervised learning scheme on
on-line handwritten signals for allograph clustering as well as for learning HMM
models for handwritten digit recognition.

12.1. Introduction

This paper deals with on-line handwriting signals clustering and Hidden Markov
Models (HMM) structure learning. These two problems may be closely related
and are of interest in the field of on-line handwriting processing and recognition.
Clustering on-line signals is useful for determining allograph automatically, iden-
tifying writing styles, discovering new handwritten shapes, etc. HMM structure
learning may help to automatically handle allograph when designing an on-line
handwriting recognition system. The standard way to learn HMM model is in-
deed only semi-automatic and requires manual tuning, especially for the HMM
topology. Learning HMM models involves learning the structure (topology) and
the parameters of the model. Usually, learning consists in first choosing a struc-
ture and then in automatically learning the model parameters from training data.
Learning parameters is generally achieved with Maximum Likelihood optimiza-
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tion (EM algorithm). Learning of model structure is then implicitly performed
manually through successive trials. A fully automatic method would open new
perspectives and allow designing easily new recognition engines for any kind of
language, characters or drawings.

Fundamentally, we seek to develop learning algorithms for Markovian systems
and focus on the learning of mixture models for typical writing styles; it is then
very close to model-based clustering. Such techniques were studied in speech
recognition. [LB93] proposed an algorithm that uses probabilistic grammatical
inference techniques, which specifically addresses speech variability. A few tech-
niques have been proposed for related tasks within the Handwriting Recognition
community, e.g. automatic identification of writing styles, writer identification.
For example, [NHPO3] proposed a probabilistic approach to define clusters: For
each handwritten character, an approach is used to learn the probabilities that a
character belongs t